25,266 research outputs found

    Exotic Meson Decay Widths using Lattice QCD

    Get PDF
    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.

    A single-domain spectral method for black hole puncture data

    Full text link
    We calculate puncture initial data corresponding to both single and binary black hole solutions of the constraint equations by means of a pseudo-spectral method applied in a single spatial domain. Introducing appropriate coordinates, these methods exhibit rapid convergence of the conformal factor and lead to highly accurate solutions. As an application we investigate small mass ratios of binary black holes and compare these with the corresponding test mass limit that we obtain through a semi-analytical limiting procedure. In particular, we compare the binding energy of puncture data in this limit with that of a test particle in the Schwarzschild spacetime and find that it deviates by 50% from the Schwarzschild result at the innermost stable circular orbit of Schwarzschild, if the ADM mass at each puncture is used to define the local black hole masses.Comment: 13 pages, 6 figures; published version with one important change, see Fig. 4 and the corresponding changes to the tex

    Proving Termination Starting from the End

    Full text link
    We present a novel technique for proving program termination which introduces a new dimension of modularity. Existing techniques use the program to incrementally construct a termination proof. While the proof keeps changing, the program remains the same. Our technique goes a step further. We show how to use the current partial proof to partition the transition relation into those behaviors known to be terminating from the current proof, and those whose status (terminating or not) is not known yet. This partition enables a new and unexplored dimension of incremental reasoning on the program side. In addition, we show that our approach naturally applies to conditional termination which searches for a precondition ensuring termination. We further report on a prototype implementation that advances the state-of-the-art on the grounds of termination and conditional termination.Comment: 16 page

    Rethinking False Spring Risk

    Get PDF
    Temperate plants are at risk of being exposed to late spring freezes. These freeze events - often called false springs - are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here we review current metrics of false spring, and how, when and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology, and offer more robust predictions as climate change progresses, which is essential for mitigating the adverse ecological and economic effects of false springs

    Study of Conformally Flat Initial Data for Highly Spinning Black Holes and their Early Evolutions

    Full text link
    We study conformally-flat initial data for an arbitrary number of spinning black holes with exact analytic solutions to the momentum constraints constructed from a linear combination of the classical Bowen-York and conformal Kerr extrinsic curvatures. The solution leading to the largest intrinsic spin, relative to the ADM mass of the spacetime epsilon_S=S/M^2_{ADM}, is a superposition with relative weights of Lambda=0.783 for conformal Kerr and (1-Lambda)=0.217 for Bowen-York. In addition, we measure the spin relative to the initial horizon mass M_{H_0}, and find that the quantity chi=S/M_{H_0}^2 reaches a maximum of \chi^{max}=0.9856 for Lambda=0.753. After equilibration, the final black-hole spin should lie in the interval 0.9324<chi_{final}<0.9856. We perform full numerical evolutions to compute the energy radiated and the final horizon mass and spin. We find that the black hole settles to a final spin of chi_{final}^{max}=0.935 when Lambda=0.783. We also study the evolution of the apparent horizon structure of this "maximal" black hole in detail.Comment: 9 pages, 8 figure

    Tropical–North Pacific Climate Linkages over the Past Four Centuries

    Get PDF
    Analyses of instrumental data demonstrate robust linkages between decadal-scale North Pacific and tropical Indo-Pacific climatic variability. These linkages encompass common regime shifts, including the noteworthy 1976 transition in Pacific climate. However, information on Pacific decadal variability and the tropical high-latitude climate connection is limited prior to the twentieth century. Herein tree-ring analysis is employed to extend the understanding of North Pacific climatic variability and related tropical linkages over the past four centuries. To this end, a tree-ring reconstruction of the December-May North Pacific index (NPI)-an index of the atmospheric circulation related to the Aleutian low pressure cell-is presented (1600-1983). The NPI reconstruction shows evidence for the three regime shifts seen in the instrumental NPI data, and for seven events in prior centuries. It correlates significantly with both instrumental tropical climate indices and a coral-based reconstruction of an optimal tropical Indo-Pacific climate index, supporting evidence for a tropical-North Pacific link extending as far west as the western Indian Ocean. The coral-based reconstruction (1781-1993) shows the twentieth-century regime shifts evident in the instrumental NPI and instrumental tropical Indo-Pacific climate index, and three previous shifts. Changes in the strength of correlation between the reconstructions over time, and the different identified shifts in both series prior to the twentieth century, suggest a varying tropical influence on North Pacific climate, with greater influence in the twentieth century. One likely mechanism is the low-frequency variability of the El Nino-Southern Oscillation (ENSO) and its varying impact on Indo-Pacific climate.</p
    • …
    corecore