179 research outputs found

    NASAs Orbital Debris JAO/ES-MCAT Optical Telescope Facility on Ascension Island

    Get PDF
    The NASA Orbital Debris Program Office has a long-standing optical program begun over three and a half decades ago in 1984, designed to observe the Earth-orbiting environment with optical telescopes. Photometrically calibrated optical data provides a statistical sample for input to NASA models of the debris population for understanding the current and future debris environment around the Earth. Tracked objects and orbits allow for analysis of break-up events. Both known (correlated target in the SSN catalogue, or CT) and unknown (uncorrelated target, or UCT) objects are of interest to better understand how to protect current spacecraft and design more robust future operational satellites, and advise on how policies and practices can lead to protecting the environment itself for future generations. In 2015, a joint NASA JSC Air Force Research Labs (AFRL) project culminated in the installation of the 1.3-meter Eugene Stansbery Meter Class Autonomous Telescope, ES-MCAT (a.k.a. MCAT) on Ascension Island. This DFM Engineering designed telescope provides nearly five-times greater light-collecting power than its predecessor, the 0.6-m MODEST telescope, and faster tracking capabilities by both the telescope and the 7-m ObservaDome. This allows for all orbital regimes to be easily within reach, ranging from low Earth to geosynchronous orbits. Extensive testing and commissioning activities of this custom system led to successfully reaching Initial Operational Capability in 2018, and the facility is currently on track to reach Full Operational Capability. The John Africano Observatory (JAO) comprises the primary 1.3-m ES-MCAT facility, the adjacent tower platform with a 0.4-m telescope, a sophisticated suite of weather instruments, and custom software by Euclid Research for autonomously running the entire system, including monitoring the weather and hardware, tasking all components, and collecting, processing, and analyzing the data. The mission of JAO and MCAT will be discussed, including survey and tracking tasking, a full discussion of data calibration, and both optics and weather-dependent performance

    Lower Extremity Power and its Relationship to Qualitative and Quantitative Measures of Landing Performance

    Get PDF
    Click the PDF icon to download the abstract

    Infrared Telescope Facility's Spectrograph Observations of Human-Made Space Objects

    Get PDF
    Presented here are the results of the Infrared Telescope Facility (IRTF) spectral observations of human-made space objects taken from 2006 to 2008. The data collected using the SpeX infrared spectrograph cover the wavelength range 0.7-2.5 micrometers. Overall, data were collected on 20 different orbiting objects at or near the geosynchronous (GEO) regime. Four of the objects were controlled spacecraft, seven were non-controlled spacecraft, five were rocket bodies, and the final four were cataloged as debris pieces. The remotely collected data are compared to the laboratory-collected reflectance data on typical spacecraft materials, thereby general materials are identified but not specific types. These results highlight the usefulness of observations in the infrared by focusing on features from hydrocarbons, silicon, and thermal emission. The spacecraft, both the controlled and non-controlled, show distinct features due to the presence of solar panels, whereas the rocket bodies do not. Signature variations between rocket bodies, due to the presence of various metals and paints on their surfaces, show a clear distinction from those objects with solar panels, demonstrating that one can distinguish most spacecraft from rocket bodies through infrared spectrum analysis. Finally, the debris pieces tend to show featureless, dark spectra. These results show that the laboratory data in its current state give excellent indications as to the nature of the surface materials on the objects. Further telescopic data collection and model updates to include noise, surface roughness, and material degradation are necessary to make better assessments of orbital object material types. However, based on the current state of the comparison between the observations and the laboratory data, infrared spectroscopic data are adequate to classify objects in GEO as spacecraft, rocket bodies, or debris

    Hydration Status Effect on Anaerobic Power and Fatigue in Collegiate Female Soccer Players

    Get PDF
    Click the PDF icon to download the abstrac

    NASA's Optical Program on Ascension Island: Bringing MCAT to Life as the Eugene Stansbery-Meter Class Autonomous Telescope (ES-MCAT)

    Get PDF
    In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs)

    NASA's Optical Measurement Program 2014

    Get PDF
    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris surveys. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m are both employed to acquire filter photometry data as well as synchronously observe targets in selected optical filters. Obtaining data synchronously yields data for material composition studies as well as longer orbital arc data on the same target without time delay or bias from a rotating, tumbling, or spinning target. Observations of GEO orbital debris using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) began in 2011. Through the data acquired on Baade, debris has been detected that reaches approx. 3 magnitudes fainter than detections with MODEST, while the spectral data from Clay provide better resolved information used in material characterization analyses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and sourcetarget- sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a modified Ritchey-Chrtien configuration on a double horseshoe equatorial mount to allow tracking objects at LEO rates through the dome's keyhole at zenith. Through the data collection techniques employed at these unique facilities, NASA's ODPO has developed a multifaceted approach to characterize the orbital debris risk to satellites in various altitudes and provide insight leading toward material characterization of debris via photometric and spectroscopic measurements. Ultimately, the data are used in conjunction with in-situ and radar measurements to provide accurate data for models of our space environment and for facilitating spacecraft risk assessment

    The Opacity of Spiral Galaxy Disks VIII: Structure of the Cold ISM

    Get PDF
    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper, we compare two techniques, one based on emission and one on absorption, applied on sections of fourteen disk galaxies. The two measurements reflect, respectively the average and apparent optical depth of a disk section. Hence, they depend differently on the average number and optical depth of ISM structures in the disk. The small scale geometry of the cold ISM is critical for accurate models of the overall energy budget of spiral disks. ISM geometry, relative contributions of different stellar populations and dust emissivity are all free parameters in galaxy Spectral Energy Distribution (SED) models; they are also sometimes degenerate, depending on wavelength coverage. Our aim is to constrain typical ISM geometry. The apparent optical depth measurement comes from the number of distant galaxies seen in HST images through the foreground disk. We measure the IR flux in images from the {\it Spitzer} Infrared Nearby Galaxy Survey in the same section of the disk that was covered by HST. A physical model of the dust is fit to the SED to estimate the dust surface density, mean temperature, and brightness in these disk sections. The surface density is subsequently converted into the average optical depth estimate. The two measurements generally agree. The ratios between the measured average and apparent optical depths of the disk sections imply optically thin clouds in these disks. Optically thick disks, are likely to have more than a single cloud along the line-of-sight.Comment: 31 pages, 5 figures, 4 tables, accepted for publication in A
    • …
    corecore