26 research outputs found

    Enhanced domain wall velocity near a ferromagnetic instability

    Full text link
    Assuming a Fermi liquid behavior for ss-conduction electrons, we rewrite the extended Landau-Lifshitz-Gilbert (LLG) equation renormalized by interactions through the Landau parameters FlaF^{a}_{l} (l=0,1,2l=0,1,2 \cdots) in an explicit form to describe the dynamic of a domain wall (DW) due to spin transfer torque phenomenon. The interaction between spins of the \textit{s}-conduction electrons explains qualitatively the DW velocity experimental observations in Ni81Fe19\mathrm{Ni_{81}}\mathrm{Fe_{19}} (Permalloy) recalculated by us without defects or impurity hypothesis. Close to Stoner ferromagnetic instability point where F0a0.99F^{a}_{0} \approx -0.99, the DW velocity becomes high (vDW600v^{*}_{DW}\approx 600 ms1ms^{-1}) and critical spin current density becomes reduced (jc1×1012j^{*}_{c}\approx1\times10^{12} Am2Am^{-2}) when compared to that calculated by nonadiabatic approach. At the critical point, the DW velocity diverges while critical spin current density at the same point goes to zero. Our theory also provides a prediction to looking for materials in which is possible applies a smallest critical spin current density and observes higher DW velocity.Comment: 7 pages, 5 figure

    Gerenciamento ótimo das pressões em redes de abastecimento de água através da criação de distritos de medição com base na aprendizagem de máquinas

    Get PDF
    Integrated management of water supply systems with efficient use of natural resources requires optimization of operational performances. Dividing the water supply networks into small units, so-called district metered areas (DMAs), is a strategy that allows the development of specific operational rules, responsible for improving the network performance. In this context, clustering methods congregate neighboring nodes in groups according to similar features, such as elevation or distance to the water source. Taking into account hydraulic, operational and mathematical criteria to determine the configuration of DMAs, this work presents the k-means model and a hybrid model, that combines a self-organizing map (SOM) with the k-means algorithm, as clustering methods, comparing four mathematical criteria to determine the number of DMAs, namely Silhouette, GAP, Calinski-Harabasz and Davies Bouldin. The influence of three clustering topological criteria is evaluated: the water demand, node elevation and pipe length, in order to determine the optimal number of clusters. Furthermore, to identify the best DMA configuration, the particle swarm optimization (PSO) method was applied to determine the number, cost, pressure setting of Pressure Reducing Valves and location of DMA entrances.24A gestão integrada dos sistemas de abastecimento de água com o uso eficiente dos recursos requer a otimização das operações. O agrupamento das redes de abastecimento de água em pequenas unidades, chamadas de distritos de medição (DMAs), é uma estratégia que permite o desenvolvimento de regras operacionais específicas, responsáveis por melhorar o desempenho da rede. Neste contexto, os métodos de classificação agrupam os nós vizinhos de acordo com características semelhantes, como elevação ou distância à fonte de água. Utilizando os critérios topológicos, operacionais e matemáticos para determinar a configuração dos DMAs, o trabalho apresenta um modelo k-means e um modelo híbrido, que combina um mapa auto-organizado (SOM) com o algoritmo k-means, como métodos de agrupamento. Comparou-se quatro critérios matemáticos, Silhouette, GAP, CalinskiHarabasz e Davies-Bouldin e analisou-se a influência de três critérios topológicos variáveis, a demanda de água, a elevação dos nós e o comprimento do tubo, para determinar o número ótimo de agrupamentos. Ademais, com o intuito de identificar a melhor configuração de DMAs, o método de otimização de enxame de partículas (PSO) foi aplicado para determinar o número, o custo, as pressões e a localização das entradas do DMA

    Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

    Full text link
    [EN] This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the non-dominated sorting genetic algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria.Carpitella, S.; Brentan, BM.; Montalvo Arango, I.; Izquierdo Sebastián, J.; Certa, A. (2019). Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems. Water Science & Technology: Water Supply. 19(8):2338-2346. https://doi.org/10.2166/ws.2019.115S23382346198Ancău, M., & Caizar, C. (2010). The computation of Pareto-optimal set in multicriterial optimization of rapid prototyping processes. Computers & Industrial Engineering, 58(4), 696-708. doi:10.1016/j.cie.2010.01.015Aşchilean, I., Badea, G., Giurca, I., Naghiu, G. S., & Iloaie, F. G. (2017). Choosing the Optimal Technology to Rehabilitate the Pipes in Water Distribution Systems Using the AHP Method. Energy Procedia, 112, 19-26. doi:10.1016/j.egypro.2017.03.1109Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management, 144(9), 04018055. doi:10.1061/(asce)wr.1943-5452.0000974Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2017). ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: An alternative to the risk priority number. Computers & Industrial Engineering, 108, 100-110. doi:10.1016/j.cie.2017.04.018Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9. doi:10.1016/s0165-0114(97)00377-1Cruz-Reyes, L., Fernandez, E., Sanchez, P., Coello Coello, C. A., & Gomez, C. (2017). Incorporation of implicit decision-maker preferences in multi-objective evolutionary optimization using a multi-criteria classification method. Applied Soft Computing, 50, 48-57. doi:10.1016/j.asoc.2016.10.037Farmani, R., Ingeduld, P., Savic, D., Walters, G., Svitak, Z., & Berka, J. (2007). Real-time modelling of a major water supply system. Proceedings of the Institution of Civil Engineers - Water Management, 160(2), 103-108. doi:10.1680/wama.2007.160.2.103Hadas, Y., & Nahum, O. E. (2016). Urban bus network of priority lanes: A combined multi-objective, multi-criteria and group decision-making approach. Transport Policy, 52, 186-196. doi:10.1016/j.tranpol.2016.08.006Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Computers & Operations Research, 81, 282-304. doi:10.1016/j.cor.2016.11.005Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004Jowitt, P. W., & Germanopoulos, G. (1992). Optimal Pump Scheduling in Water‐Supply Networks. Journal of Water Resources Planning and Management, 118(4), 406-422. doi:10.1061/(asce)0733-9496(1992)118:4(406)Jowitt, P. W., & Xu, C. (1990). Optimal Valve Control in Water‐Distribution Networks. Journal of Water Resources Planning and Management, 116(4), 455-472. doi:10.1061/(asce)0733-9496(1990)116:4(455)Kurek, W., & Ostfeld, A. (2013). Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. Journal of Environmental Management, 115, 189-197. doi:10.1016/j.jenvman.2012.11.030Lima, G. M., Luvizotto, E., & Brentan, B. M. (2017). Selection and location of Pumps as Turbines substituting pressure reducing valves. Renewable Energy, 109, 392-405. doi:10.1016/j.renene.2017.03.056Mala-Jetmarova, H., Sultanova, N., & Savic, D. (2017). Lost in optimisation of water distribution systems? A literature review of system operation. Environmental Modelling & Software, 93, 209-254. doi:10.1016/j.envsoft.2017.02.009Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Odan, F. K., Ribeiro Reis, L. F., & Kapelan, Z. (2015). Real-Time Multiobjective Optimization of Operation of Water Supply Systems. Journal of Water Resources Planning and Management, 141(9), 04015011. doi:10.1061/(asce)wr.1943-5452.0000515Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., … Walski, T. (2008). The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. Journal of Water Resources Planning and Management, 134(6), 556-568. doi:10.1061/(asce)0733-9496(2008)134:6(556)Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012Żak, J., & Kruszyński, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.03

    Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location

    Full text link
    [EN] A large volume of the water produced for public supply is lost in the systems between sources and consumers. An important-in many cases the greatest-fraction of these losses are physical losses, mainly related to leaks and bursts in pipes and in consumer connections. Fast detection and location of bursts plays an important role in the design of operation strategies for water loss control, since this helps reduce the volume lost from the instant the event occurs until its effective repair (run time). The transient pressure signals caused by bursts contain important information about their location and magnitude, and stamp on any of these events a specific "hydraulic signature". The present work proposes and evaluates three methods to disaggregate transient signals, which are used afterwards to train artificial neural networks (ANNs) to identify burst locations and calculate the leaked flow. In addition, a clustering process is also used to group similar signals, and then train specific ANNs for each group, thus improving both the computational efficiency and the location accuracy. The proposed methods are applied to two real distribution networks, and the results show good accuracy in burst location and characterization.Manzi, D.; Brentan, BM.; Meirelles, G.; Izquierdo Sebastián, J.; Luvizotto Jr., E. (2019). Pattern Recognition and Clustering of Transient Pressure Signals for Burst Location. Water. 11(11):1-13. https://doi.org/10.3390/w11112279S1131111Creaco, E., & Walski, T. (2017). Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction. Journal of Water Resources Planning and Management, 143(12), 04017074. doi:10.1061/(asce)wr.1943-5452.0000846Campisano, A., Creaco, E., & Modica, C. (2010). RTC of Valves for Leakage Reduction in Water Supply Networks. Journal of Water Resources Planning and Management, 136(1), 138-141. doi:10.1061/(asce)0733-9496(2010)136:1(138)Campisano, A., Modica, C., Reitano, S., Ugarelli, R., & Bagherian, S. (2016). Field-Oriented Methodology for Real-Time Pressure Control to Reduce Leakage in Water Distribution Networks. Journal of Water Resources Planning and Management, 142(12), 04016057. doi:10.1061/(asce)wr.1943-5452.0000697Vítkovský, J. P., Simpson, A. R., & Lambert, M. F. (2000). Leak Detection and Calibration Using Transients and Genetic Algorithms. Journal of Water Resources Planning and Management, 126(4), 262-265. doi:10.1061/(asce)0733-9496(2000)126:4(262)Pérez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., & Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157-1167. doi:10.1016/j.conengprac.2011.06.004Jung, D., & Kim, J. (2017). Robust Meter Network for Water Distribution Pipe Burst Detection. Water, 9(11), 820. doi:10.3390/w9110820Colombo, A. F., Lee, P., & Karney, B. W. (2009). A selective literature review of transient-based leak detection methods. Journal of Hydro-environment Research, 2(4), 212-227. doi:10.1016/j.jher.2009.02.003Choi, D., Kim, S.-W., Choi, M.-A., & Geem, Z. (2016). Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System. Water, 8(4), 142. doi:10.3390/w8040142Christodoulou, S. E., Kourti, E., & Agathokleous, A. (2016). Waterloss Detection in Water Distribution Networks using Wavelet Change-Point Detection. Water Resources Management, 31(3), 979-994. doi:10.1007/s11269-016-1558-5Guo, X., Yang, K., & Guo, Y. (2012). Leak detection in pipelines by exclusively frequency domain method. Science China Technological Sciences, 55(3), 743-752. doi:10.1007/s11431-011-4707-3Holloway, M. B., & Hanif Chaudhry, M. (1985). Stability and accuracy of waterhammer analysis. Advances in Water Resources, 8(3), 121-128. doi:10.1016/0309-1708(85)90052-1Sanz, G., Pérez, R., Kapelan, Z., & Savic, D. (2016). Leak Detection and Localization through Demand Components Calibration. Journal of Water Resources Planning and Management, 142(2), 04015057. doi:10.1061/(asce)wr.1943-5452.0000592Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., & Zhao, H. (2016). Leakage Zone Identification in Large-Scale Water Distribution Systems Using Multiclass Support Vector Machines. Journal of Water Resources Planning and Management, 142(11), 04016042. doi:10.1061/(asce)wr.1943-5452.0000661Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21-31. doi:10.1080/15730620600578538Covas, D., Ramos, H., & de Almeida, A. B. (2005). Standing Wave Difference Method for Leak Detection in Pipeline Systems. Journal of Hydraulic Engineering, 131(12), 1106-1116. doi:10.1061/(asce)0733-9429(2005)131:12(1106)Liggett, J. A., & Chen, L. (1994). Inverse Transient Analysis in Pipe Networks. Journal of Hydraulic Engineering, 120(8), 934-955. doi:10.1061/(asce)0733-9429(1994)120:8(934)Caputo, A. C., & Pelagagge, P. M. (2002). An inverse approach for piping networks monitoring. Journal of Loss Prevention in the Process Industries, 15(6), 497-505. doi:10.1016/s0950-4230(02)00036-0Van Zyl, J. E. (2014). Theoretical Modeling of Pressure and Leakage in Water Distribution Systems. Procedia Engineering, 89, 273-277. doi:10.1016/j.proeng.2014.11.187Izquierdo, J., & Iglesias, P. . (2004). Mathematical modelling of hydraulic transients in complex systems. Mathematical and Computer Modelling, 39(4-5), 529-540. doi:10.1016/s0895-7177(04)90524-9Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-zNavarrete-López, C., Herrera, M., Brentan, B., Luvizotto, E., & Izquierdo, J. (2019). Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water, 11(2), 246. doi:10.3390/w11020246Meirelles, G., Manzi, D., Brentan, B., Goulart, T., & Luvizotto, E. (2017). Calibration Model for Water Distribution Network Using Pressures Estimated by Artificial Neural Networks. Water Resources Management, 31(13), 4339-4351. doi:10.1007/s11269-017-1750-2Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Hybrid SOM+ k -Means clustering to improve planning, operation and management in water distribution systems. Environmental Modelling & Software, 106, 77-88. doi:10.1016/j.envsoft.2018.02.013Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3(1), 1-27. doi:10.1080/0361092740882710

    Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework

    Full text link
    [EN] Epidemiology-based models have shown to have successful adaptations to deal with challenges coming from various areas of Engineering, such as those related to energy use or asset management. This paper deals with urban water demand, and data analysis is based on an Epidemiology tool-set herein developed. This combination represents a novel framework in urban hydraulics. Specifically, various reduction tools for time series analyses based on a symbolic approximate (SAX) coding technique able to deal with simple versions of data sets are presented. Then, a neural-network-based model that uses SAX-based knowledge-generation from various time series is shown to improve forecasting abilities. This knowledge is produced by identifying water distribution district metered areas of high similarity to a given target area and sharing demand patterns with the latter. The proposal has been tested with databases from a Brazilian water utility, providing key knowledge for improving water management and hydraulic operation of the distribution system. This novel analysis framework shows several benefits in terms of accuracy and performance of neural network models for water demand.Navarrete-López, CF.; Herrera Fernández, AM.; Brentan, BM.; Luvizotto Jr., E.; Izquierdo Sebastián, J. (2019). Enhanced Water Demand Analysis via Symbolic Approximation within an Epidemiology-Based Forecasting Framework. Water. 11(246):1-17. https://doi.org/10.3390/w11020246S11711246Fecarotta, O., Carravetta, A., Morani, M., & Padulano, R. (2018). Optimal Pump Scheduling for Urban Drainage under Variable Flow Conditions. Resources, 7(4), 73. doi:10.3390/resources7040073Creaco, E., & Pezzinga, G. (2018). Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs. Water, 10(4), 466. doi:10.3390/w10040466Nguyen, K. A., Stewart, R. A., Zhang, H., Sahin, O., & Siriwardene, N. (2018). Re-engineering traditional urban water management practices with smart metering and informatics. Environmental Modelling & Software, 101, 256-267. doi:10.1016/j.envsoft.2017.12.015Adamowski, J., & Karapataki, C. (2010). Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms. Journal of Hydrologic Engineering, 15(10), 729-743. doi:10.1061/(asce)he.1943-5584.0000245Caiado, J. (2010). Performance of Combined Double Seasonal Univariate Time Series Models for Forecasting Water Demand. Journal of Hydrologic Engineering, 15(3), 215-222. doi:10.1061/(asce)he.1943-5584.0000182Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387(1-2), 141-150. doi:10.1016/j.jhydrol.2010.04.005Msiza, I. S., Nelwamondo, F. V., & Marwala, T. (2008). Water Demand Prediction using Artificial Neural Networks and Support Vector Regression. Journal of Computers, 3(11). doi:10.4304/jcp.3.11.1-8Tiwari, M., Adamowski, J., & Adamowski, K. (2016). Water demand forecasting using extreme learning machines. Journal of Water and Land Development, 28(1), 37-52. doi:10.1515/jwld-2016-0004Vijayalaksmi, D. P., & Babu, K. S. J. (2015). Water Supply System Demand Forecasting Using Adaptive Neuro-fuzzy Inference System. Aquatic Procedia, 4, 950-956. doi:10.1016/j.aqpro.2015.02.119Zhou, L., Xia, J., Yu, L., Wang, Y., Shi, Y., Cai, S., & Nie, S. (2016). Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans. International Journal of Environmental Research and Public Health, 13(4), 355. doi:10.3390/ijerph13040355Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. (2016). Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. Energies, 9(2), 109. doi:10.3390/en9020109Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175. doi:10.1016/s0925-2312(01)00702-0Herrera, M., García-Díaz, J. C., Izquierdo, J., & Pérez-García, R. (2011). Municipal Water Demand Forecasting: Tools for Intervention Time Series. Stochastic Analysis and Applications, 29(6), 998-1007. doi:10.1080/07362994.2011.610161Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11(2), 2664-2675. doi:10.1016/j.asoc.2010.10.015Campisi-Pinto, S., Adamowski, J., & Oron, G. (2012). Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy. Water Resources Management, 26(12), 3539-3558. doi:10.1007/s11269-012-0089-yBrentan, B. M., Luvizotto Jr., E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. doi:10.1016/j.cam.2016.02.009Di Nardo, A., Di Natale, M., Musmarra, D., Santonastaso, G. F., Tzatchkov, V., & Alcocer-Yamanaka, V. H. (2014). Dual-use value of network partitioning for water system management and protection from malicious contamination. Journal of Hydroinformatics, 17(3), 361-376. doi:10.2166/hydro.2014.014Scarpa, F., Lobba, A., & Becciu, G. (2016). Elementary DMA Design of Looped Water Distribution Networks with Multiple Sources. Journal of Water Resources Planning and Management, 142(6), 04016011. doi:10.1061/(asce)wr.1943-5452.0000639Panagopoulos, G. P., Bathrellos, G. D., Skilodimou, H. D., & Martsouka, F. A. (2012). Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS. Water Resources Management, 26(5), 1347-1363. doi:10.1007/s11269-011-9962-3Buchberger, S. G., & Nadimpalli, G. (2004). Leak Estimation in Water Distribution Systems by Statistical Analysis of Flow Readings. Journal of Water Resources Planning and Management, 130(4), 321-329. doi:10.1061/(asce)0733-9496(2004)130:4(321)Candelieri, A. (2017). Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water, 9(3), 224. doi:10.3390/w9030224Padulano, R., & Del Giudice, G. (2018). Pattern Detection and Scaling Laws of Daily Water Demand by SOM: an Application to the WDN of Naples, Italy. Water Resources Management, 33(2), 739-755. doi:10.1007/s11269-018-2140-0Bloetscher, F. (2012). Protecting People, Infrastructure, Economies, and Ecosystem Assets: Water Management in the Face of Climate Change. Water, 4(2), 367-388. doi:10.3390/w4020367Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling – Urban drainage and beyond. Environmental Modelling & Software, 54, 88-107. doi:10.1016/j.envsoft.2013.12.018Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G., & Mendes, J. F. F. (2012). Localization and Spreading of Diseases in Complex Networks. Physical Review Letters, 109(12). doi:10.1103/physrevlett.109.128702Danila, B., Yu, Y., Marsh, J. A., & Bassler, K. E. (2006). Optimal transport on complex networks. Physical Review E, 74(4). doi:10.1103/physreve.74.046106Herrera, M., Izquierdo, J., Pérez-García, R., & Montalvo, I. (2012). Multi-agent adaptive boosting on semi-supervised water supply clusters. Advances in Engineering Software, 50, 131-136. doi:10.1016/j.advengsoft.2012.02.005Maslov, S., Sneppen, K., & Zaliznyak, A. (2004). Detection of topological patterns in complex networks: correlation profile of the internet. Physica A: Statistical Mechanics and its Applications, 333, 529-540. doi:10.1016/j.physa.2003.06.002Lloyd, A. L., & Valeika, S. (2007). Network models in epidemiology: an overview. World Scientific Lecture Notes in Complex Systems, 189-214. doi:10.1142/9789812771582_0008Hamilton, I., Summerfield, A., Oreszczyn, T., & Ruyssevelt, P. (2017). Using epidemiological methods in energy and buildings research to achieve carbon emission targets. Energy and Buildings, 154, 188-197. doi:10.1016/j.enbuild.2017.08.079Bardet, J.-P., & Little, R. (2014). Epidemiology of urban water distribution systems. Water Resources Research, 50(8), 6447-6465. doi:10.1002/2013wr015017De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865Hamilton, I. G., Summerfield, A. J., Lowe, R., Ruyssevelt, P., Elwell, C. A., & Oreszczyn, T. (2013). Energy epidemiology: a new approach to end-use energy demand research. Building Research & Information, 41(4), 482-497. doi:10.1080/09613218.2013.798142Herrera, M., Ferreira, A. A., Coley, D. A., & de Aquino, R. R. B. (2016). SAX-quantile based multiresolution approach for finding heatwave events in summer temperature time series. AI Communications, 29(6), 725-732. doi:10.3233/aic-160716Padulano, R., & Del Giudice, G. (2018). A Mixed Strategy Based on Self-Organizing Map for Water Demand Pattern Profiling of Large-Size Smart Water Grid Data. Water Resources Management, 32(11), 3671-3685. doi:10.1007/s11269-018-2012-7Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. doi:10.1007/s10618-007-0064-zAghabozorgi, S., & Wah, T. Y. (2014). Clustering of large time series datasets. Intelligent Data Analysis, 18(5), 793-817. doi:10.3233/ida-140669Yuan, J., Wang, Z., Han, M., & Sun, Y. (2015). A lazy associative classifier for time series. Intelligent Data Analysis, 19(5), 983-1002. doi:10.3233/ida-150754Rasheed, F., Alshalalfa, M., & Alhajj, R. (2011). Efficient Periodicity Mining in Time Series Databases Using Suffix Trees. IEEE Transactions on Knowledge and Data Engineering, 23(1), 79-94. doi:10.1109/tkde.2010.76Schmieder, R., & Edwards, R. (2011). Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. PLoS ONE, 6(3), e17288. doi:10.1371/journal.pone.0017288Valimaki, N., Gerlach, W., Dixit, K., & Makinen, V. (2007). Compressed suffix tree a basis for genome-scale sequence analysis. Bioinformatics, 23(5), 629-630. doi:10.1093/bioinformatics/btl681Ezkurdia, I., Juan, D., Rodriguez, J. M., Frankish, A., Diekhans, M., Harrow, J., … Tress, M. L. (2014). Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Human Molecular Genetics, 23(22), 5866-5878. doi:10.1093/hmg/ddu309Bermudez-Santana, C. I. (2016). APLICACIONES DE LA BIOINFORMÁTICA EN LA MEDICINA: EL GENOMA HUMANO. ¿CÓMO PODEMOS VER TANTO DETALLE? Acta Biológica Colombiana, 21(1Supl), 249-258. doi:10.15446/abc.v21n1supl.51233Cai, L., Li, X., Ghosh, M., & Guo, B. (2009). Stability analysis of an HIV/AIDS epidemic model with treatment. Journal of Computational and Applied Mathematics, 229(1), 313-323. doi:10.1016/j.cam.2008.10.067Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024Brentan, B. M., Meirelles, G., Herrera, M., Luvizotto, E., & Izquierdo, J. (2017). Correlation Analysis of Water Demand and Predictive Variables for Short-Term Forecasting Models. Mathematical Problems in Engineering, 2017, 1-10. doi:10.1155/2017/6343625Bhaskaran, K., Gasparrini, A., Hajat, S., Smeeth, L., & Armstrong, B. (2013). Time series regression studies in environmental epidemiology. International Journal of Epidemiology, 42(4), 1187-1195. doi:10.1093/ije/dyt092HELFENSTEIN, U. (1991). The Use of Transfer Function Models, Intervention Analysis and Related Time Series Methods in Epidemiology. International Journal of Epidemiology, 20(3), 808-815. doi:10.1093/ije/20.3.808Herrera, M., Abraham, E., & Stoianov, I. (2016). A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resources Management, 30(5), 1685-1699. doi:10.1007/s11269-016-1245-6Jung, D., Choi, Y., & Kim, J. (2016). Optimal Node Grouping for Water Distribution System Demand Estimation. Water, 8(4), 160. doi:10.3390/w8040160Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2012). Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275-309. doi:10.1007/s10618-012-0250-5Cassisi, C., Prestifilippo, M., Cannata, A., Montalto, P., Patanè, D., & Privitera, E. (2016). Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna. Pure and Applied Geophysics, 173(7), 2365-2386. doi:10.1007/s00024-016-1284-1McCreight, E. M. (1976). A Space-Economical Suffix Tree Construction Algorithm. Journal of the ACM, 23(2), 262-272. doi:10.1145/321941.321946Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series clustering – A decade review. Information Systems, 53, 16-38. doi:10.1016/j.is.2015.04.007Warren Liao, T. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857-1874. doi:10.1016/j.patcog.2005.01.02

    Water demand forecasting accuracy and influencing factors at different spatial scales using a Gradient Boosting Machine

    Get PDF
    Understanding, comparing, and accurately predicting water demand at different spatial scales is an important goal that will allow effective targeting of the appropriate operational and conservation efforts under an uncertain future. This study uses data relating to water consumption available at the household level, as well as postcode locations, household characteristics, and weather data in order to identify the relationships between spatial scale, influencing factors, and forecasting accuracy. For this purpose, a Gradient Boosting Machine (GBM) is used to predict water demand 1–7 days into the future. Results show an exponential decay in prediction accuracy from a Mean Absolute Percentage Error (MAPE) of 3.2% to 17%, for a reduction in group size from 600 to 5 households. Adding explanatory variables to the forecasting model reduces the MAPE up to 20% for the peak days and smaller household groups (20–56 households), whereas for larger aggregations of properties (100–804 households), the range of improvement is much smaller (up to 1.2%). Results also show that certain types of input variables (past consumption and household characteristics) become more important for smaller aggregations of properties, whereas others (weather data) become less important.Sanitary Engineerin

    Memory seats and the patient record

    Get PDF
    The patient's medical record is made evident, an information package compiled during the course of the individual in a Health area institution. Considered a relevant instrument of communication between many professionals focused on patient care, in the medical record one can find test results, prescribed treatments, results obtained, among other things. It constitutes a valuable document since it subsidizes the medical staff and the institution confirming actions taken and emerging costs. As a result of the various possibilities of use, our objective is to characterize the patient’s medical record as one of the places of memory according to Nora’s idea. Through theoretical research it is possible to notice that its characteristics, functions and purposes for which it was created authorize its inclusion in the category of places of memory

    Assessing downscaling techniques for frequency analysis, total precipitation and rainy day estimation in CMIP6 simulations over hydrological years

    Get PDF
    General circulation models generate climate simulations on grids with resolutions ranging from 50 to 600 km. The resulting coarse spatial resolution of the model outcomes requires post-processing routines to ensure reliable climate information for practical studies, prompting the widespread application of downscaling techniques. However, assessing the effectiveness of multiple downscaling techniques is essential, as their accuracy varies depending on the objectives of the analysis and the characteristics of the case study. In this context, this study aims to evaluate the performance of downscaling the daily precipitation series in the Metropolitan Region of Belo Horizonte (MRBH), Brazil, with the final scope of performing frequency analyses and estimating total precipitation and the number of rainy days per hydrological year at both annual and multiannual levels. To develop this study, 78 climate model simulations with a horizontal resolution of 100 km, which participated in the SSP1-2.6 and/or SSP5-8.5 scenarios of CMIP6, are employed. The results highlight that adjusting the simulations from the general circulation models by the delta method, quantile mapping and regression trees produces accurate results for estimating the total precipitation and number of rainy days. Finally, it is noted that employing downscaled precipitation series through quantile mapping and regression trees also yields promising results in terms of the frequency analyses.</p

    Battle of the Attack Detection Algorithms:Disclosing cyber attacks on water distribution networks

    Get PDF
    The BATtle of the Attack Detection ALgorithms (BATADAL) is the most recent competition on planning and management of water networks undertaken within the Water Distribution Systems Analysis Symposium. The goal of the battle was to compare the performance of algorithms for the detection of cyber-physical attacks, whose frequency increased in the past few years along with the adoption of smart water technologies. The design challenge was set for C-Town network, a real-world, medium-sized water distribution system operated through Programmable Logic Controllers and a Supervisory Control And Data Acquisition (SCADA) system. Participants were provided with datasets containing (simulated) SCADA observations, and challenged with the design of an attack detection algorithm. The effectiveness of all submitted algorithms was evaluated in terms of time-to-detection and classification accuracy. Seven teams participated in the battle and proposed a variety of successful approaches leveraging data analysis, model-based detection mechanisms, and rule checking. Results were presented at the Water Distribution Systems Analysis Symposium (World Environmental & Water Resources Congress), in Sacramento, on May 21-25, 2017. This paper summarizes the BATADAL problem, proposed algorithms, results, and future research directions
    corecore