1,758 research outputs found
Aerodynamics of a finite wing with simulated ice
The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. Results are reviewed from earlier two-dimensional tests which show the character of the large leading-edge separation bubbles caused by the simulated ice accretion. The 2-D bubbles are found to closely resemble well known airfoil laminar separation bubbles. For the 3-D experiments a semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC subsonic wind tunnel. The model uses a NACA 0012 airfoil section on a rectangular planform with interchangeable tip and root sections to allow for 0- and 30-degree sweep. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil flow visualization has been performed on the iced model and reveals extensive spanwise and vortical flow in the separation bubble aft of the upper surface horn. Sidewall interaction and spanwise nonuniformity are also seen on the unswept model. Comparisons to the computed flow fields are shown. Results are also shown for roughness effects on the straight wing. Sand grain roughness on the ice shape is seen to have a different effect than isolated 3-D roughness elements
Distribution and Efficiency of Hydrocarbon-Oxidizing Bacteria in a Freshwater Reservoir
Hydrocarbon-oxidizing bacteria were identified from three stations on DeGray Reservoir, Arkansas. The organisms were primarily gram-negative rods representing 9 taxa and 37 biotypes Pseudomonas spp. were the most common isolates. The largest populations were found in areas most frequently used by boaters, although seasonal fluctuations were apparent during the spring and fall. The degradation of outboard motor oil by the five most rapidly growing isolates was studied. Each species had a different decomposition profile, and substrate oxidation rates were variable Acinetobacter calcoaceticus var. anitratus was the most efficient decomposer
Rime ice accretion and its effect on airfoil performance
A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape
Review of \u3cem\u3ePopulation Biology of Grasses\u3c/em\u3e
Population Biology of Grasses provides a wealth of knowledge beyond population biology that ecologists and ecosystem biologists will find relevant to their concerns, particularly those with an interest in grasslands. Though not limited to the Great Plains region, the book would make an excellent addition to the reference shelf of anyone interested in grasses and grassland-related ecosystems, including readers with an interest in land management and preservation. While the papers are written for different levels of readers, all provide information accessible to non-specialists
A mathematical model of a large open fire
A mathematical model capable of predicting the detailed characteristics of large, liquid fuel, axisymmetric, pool fires is described. The predicted characteristics include spatial distributions of flame gas velocity, soot concentration and chemical specie concentrations including carbon monoxide, carbon dioxide, water, unreacted oxygen, unreacted fuel and nitrogen. Comparisons of the predictions with experimental values are also given
[Low-Frequency Flow Oscillation
The results of the research conducted under this grant are presented in detail in three Master theses, by Heinrich, Balow, and Broeren. Additional analysis of the experimental data can be found in two AIAA Journal articles and two conference papers. Citations for all of the studies' publications can be found in the bibliography which is attached. The objective of Heinrich's study was to document the low-frequency flow oscillation on the LRN-1007 airfoil, which had been previously observed at low Reynolds number, to determine its origin, and explore the phenomenon at higher Reynolds number. Heinrich performed detailed flow visualization on the airfoil using surface fluorescent oil and laser-sheet off-body visualization. A large leading-edge separation bubble and trailing-edge separation was identified on the airfoil just prior to the onset of the unsteady stall flow oscillation. From the laser-sheet data, the unsteady flow appeared as a massive boundary-layer separation followed by flow reattachment. Hot-wire data were taken in the wake to identify the presence of the flow oscillation and the dominant frequency. The oscillation was found in the flow from a Reynolds number of 0.3 to 1.3 x 10 exp 6. The Strouhal number based on airfoil projected height was nominally 0.02 and increased slightly with increasing Reynolds number and significantly with increasing airfoil angle of attack. Balow focused his research on the leading-edge separation bubble which was hypothesized to be the origin of the low-frequency oscillation. Initially, experimental measurements in the bubble at the onset of the low-frequency oscillation were attempted to study the characteristics of the bubble and explain possible relationships to the shear-layer-flapping phenomena. Unfortunately, the bubble proved to be extremely sensitive to the probe interference and it drastically reduced the size of the bubble. These detailed measurements were then abandoned by Balow. However, this led to a series of tests where the leading-edge bubble and trailing-edge separation were altered and the affect on the flow-oscillation studied. Balow found that by tripping the airfoil boundary-layer with "zigzag" tape ahead of bubble separation, the bubble was effectively eliminated mid the oscillation suppressed. Wake survey drag measurements showed a drastic reduction in airfoil drag when the bubble and oscillation were eliminated. Using the "zigzag" tape, the trailing-edge separation was moved downstream approximately 5 percent chord. This was found to reduce the amplitude of the oscillation, particularly in the onset stage at low angle of attack (around 14 degrees). Through detailed analysis of the wake behind the airfoil during the unsteady flow oscillation, Balow provided a better understanding of the wake flowfield. Broeren studied the oscillating flowfield in detail at Reynolds number equal 3 x 10 exp 5 and an angle of attack of 15 degrees using laser Doppler velocimetry (LDV). Two-dimensional LDV data were acquired at 687 grid points above the model upper surface while hot-wire data were taken simultaneously in the wake. Using the hot-wire signal, the LDV data were phase averaged into 24 bins to represent a single ensemble average of one oscillation cycle. The velocity data showed a flowfield oscillation that could be divided into three flow regimes. In the first regime, the flow over the airfoil was completely separated initially, the flowfield reattached from the leading edge and the reattachment point moved downstream with increasing time or phase. Broeren referred to this as the reattachment regime. The bubble development regime followed, where a leading-edge separation bubble formed at the leading edge and grew with increasing time. During the initial part of this regime the trailing-edge separation continued to move downstream. However, during the last 30 degrees of phase the trailing-edge separation moved rapidly forward and appeared to merge with the leading-edge bubble. During the third regime, the separation regime, the flow was segmented from the airfoil leading edge and did not reattach to the airfoil surface. The reverse flow was seen to grow in vertical extent up from the model surface as the phase increased. Next reattachment began again at the leading edge signaling the start of the reattachment regime, and so the cycle continued. From Broeren's work, the details of the unsteady flowfield over the airfoil were seen for the first time. From this research a great deal has been learned about the low-frequency flow oscillation which naturally occurs on the LRN-1007 airfoil near stall. The oscillation was seen to persist at higher Reynolds number, the dependence of the Strouhal number on angle of attack and Reynolds number were discovered, the critical role played by the laminar bubble was shown and the entire upper surface flowfield during a flow oscillation cycle was measured and analyzed. What still eludes understanding is the scaling of the flow oscillation and why certain airfoils, such as the LRN, have a very strong low-frequency mode and other airfoils exhibit no organized low-frequency oscillation at all
Effects of Ice Accretion on Aircraft Aerodynamics
The primary objective of this research was to support the development of a new ice accretion model by improving our physical understanding of the ice accretion process through experimental measurements. The focus was on the effect of the initial ice roughness (smooth/rough boundary) on the accretion process. This includes understanding the boundary-layer development over the roughness and especially its effect on the heat transfer which is fundamental to the ice accretion process. The research focused on acquiring the experimental data needed to formulate a new ice accretion physical model. Research was conducted to analyze boundary-layer data taken on a NACA 0012 airfoil with roughness to simulate the smooth/rough boundary. The effect of isolated roughness on boundary-layer transition was studied experimentally to determine if the classical critical roughness Reynolds number criteria could be applied to transition in the airfoil leading-edge area. The effect of simulated smooth/rough boundary roughness on convective heat transfer was studied to complete the study. During the course of this research the effect of free-stream wind tunnel turbulence on the boundary layer was measured. Since this quantity was not well known, research to accurately measure the wind tunnel turbulence in an icing cloud was undertaken. Preliminary results were attained and the final data were acquired, reduced and presented under a subsequent grant
An Experimental Study of the Aerodynamics of a Swept and Unswept Semispan Wing with a Simulated Glaze Ice Accretion
Two semispan wings, one with a rectangular planform and one with 30 degrees of leading edge sweep were tested. Both had a NACA 0012 airfoil section, and both were tested clean and with simulated glaze ice shapes on their leading edges. Several surface roughness were tested. Each model geometry is documented and each surface roughness is explained. Aerodynamic performance of the wing in the form of sectional lift and integrated three-dimensional lift is documented through pressure measurements obtained from rows of surface pressure taps placed at five span locations on the wing. For the rectangular wing, sectional drag near the midspan is obtained from wake total pressure profiles. The data is presented in tabular and graphical form and is also available on computer disk
An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion
An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods
- …