1,004 research outputs found

    Quantum filter for non-local polarization properties of photonic qubits

    Get PDF
    We present an optical filter that transmits photon pairs only if they share the same horizontal or vertical polarization, without decreasing the quantum coherence between these two possibilities. Various applications for entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources adde

    Opto-mechanical micro-macro entanglement

    Get PDF
    We propose to create and detect opto-mechanical entanglement by storing one component of an entangled state of light in a mechanical resonator and then retrieving it. Using micro-macro entanglement of light as recently demonstrated experimentally, one can then create opto-mechanical entangled states where the components of the superposition are macroscopically different. We apply this general approach to two-mode squeezed states where one mode has undergone a large displacement. Based on an analysis of the relevant experimental imperfections, the scheme appears feasible with current technology.Comment: 7 pages, 6 figures, to appear in PRL, submission coordinated with Sekatski et al. who reported on similar result

    Interference due to Coherence Swapping

    Get PDF
    We propose a method called `coherence swapping' which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiations. This phenomenon is also present for the charged particles, and can be used to swap the effect of flux line due to Aharonov-Bohm effect. We propose an optical version of the experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.Comment: Latex file, 10 pages, Two figure

    Signature of the Overhauser field on the coherent spin dynamics of donor-bound electron in a single CdTe quantum well

    Full text link
    We have studied the coherent spin dynamics in an oblique magnetic field of electrons localized on donors and placed in the middle of a single CdTe quantum well, by using a time-resolved optical technique: the photo-induced Faraday rotation. We showed that this dynamics is affected by a weak Overhauser field created via the hyperfine interaction of optically spin-polarized donor-bound electrons with the surrounding nuclear isotopes carrying non-zero spins. We have measured this nuclear field, which is on the order of a few mT and can reach a maximum experimental value of 9.4 mT. This value represents 13 % of the maximal nuclear polarization, and corresponds also to 13 % of maximal electronic polarization.Comment: 15 pages, 4 figure

    Entangled photons from the polariton vacuum in a switchable optical cavity

    Full text link
    We study theoretically the entanglement of two-photon states in the ground state of the intersubband cavity system, the so-called polariton vacuum. The system consists of a sequence of doped quantum wells located inside a microcavity and the photons can interact with intersubband excitations inside the quantum wells. Using an explicit solution for the ground state of the system, operated in the ultrastrong coupling regime, a post-selection is introduced, where only certain two-photon states are considered and analyzed for mode entanglement. We find that a fast quench of the coupling creates entangled photons and that the degree of entanglement depends on the absolute values of the in-plane wave vectors of the photons. Maximally entangled states can be generated by choosing the appropriate modes in the post-selection.Comment: 9+ pages, 7 figure

    Demonstration of Non-Deterministic Quantum Logic Operations using Linear Optical Elements

    Full text link
    Knill, Laflamme, and Milburn recently showed that non-deterministic quantum logic operations could be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors [Nature 409, 46 (2001)]. Here we report the experimental demonstration of two logic devices of this kind, a destructive controlled-NOT (CNOT) gate and a quantum parity check. These two devices can be combined with a pair of entangled photons to implement a conventional (non-destructive) CNOT that succeeds with a probability of 1/4.Comment: 4 pages, 5 figures; Minor change

    Experimental violation of a spin-1 Bell inequality using maximally-entangled four-photon states

    Get PDF
    We demonstrate the first experimental violation of a spin-1 Bell inequality. The spin-1 inequality is a calculation based on the Clauser, Horne, Shimony and Holt formalism. For entangled spin-1 particles the maximum quantum mechanical prediction is 2.552 as opposed to a maximum of 2, predicted using local hidden variables. We obtained an experimental value of 2.27 ±0.02\pm 0.02 using the four-photon state generated by pulsed, type-II, stimulated parametric down-conversion. This is a violation of the spin-1 Bell inequality by more than 13 standard deviations.Comment: 5 pages, 3 figures, Revtex4. Problem with figures resolve

    Production of long-lived atomic vapor inside high-density buffer gas

    Full text link
    Atomic vapor of four different paramagnetic species: gold, silver, lithium, and rubidium, is produced and studied inside several buffer gases: helium, nitrogen, neon, and argon. The paramagnetic atoms are injected into the buffer gas using laser ablation. Wires with diameters 25 μ\mum, 50 μ\mum, and 100 μ\mum are used as ablation targets for gold and silver, bulk targets are used for lithium and rubidium. The buffer gas cools and confines the ablated atoms, slowing down their transport to the cell walls. Buffer gas temperatures between 20 K and 295 K, and densities between 101610^{16} cm3^{-3} and 2×10192\times10^{19} cm3^{-3} are explored. Peak paramagnetic atom densities of 101110^{11} cm3^{-3} are routinely achieved. The longest observed paramagnetic vapor density decay times are 110 ms for silver at 20 K and 4 ms for lithium at 32 K. The candidates for the principal paramagnetic-atom loss mechanism are impurities in the buffer gas, dimer formation and atom loss on sputtered clusters.Comment: Some minor editorial changes and corrections, added reference

    Qubits entanglement dynamics modified by an effective atomic environment

    Full text link
    We study entanglement dynamics of a couple of two-level atoms resonantly interacting with a cavity mode and embedded in a dispersive atomic environment. We show that in the absence of the environment the entanglement reaches its maximum value when only one exitation is involved. Then, we find that the atomic environment modifies that entanglement dynamics and induces a typical collapse-revival structure even for an initial one photon Fock state of the field.Comment: eight pages, two figure include
    corecore