2,108 research outputs found

    Gravitational cubic interactions for a massive mixed symmetry gauge field

    Full text link
    In a recent paper arXiv:1107.1872 cubic gravitational interactions for a massless mixed symmetry field in AdS space have been constructed. In the current paper we extend these results to the case of massive field. We work in a Fradkin-Vasiliev approach and use frame-like gauge invariant description for massive field which works in (A)dS spaces with arbitrary values of cosmological constant including flat Minkowski space. In this, massless limit in AdS space coincides with the results of arXiv:1107.1872 while we show that it is impossible to switch on gravitational interaction for massless field in dS space.Comment: 13 page

    First Order Actions and Duality

    Get PDF
    We consider some aspects of classical S-duality transformations in first order actions taken into account the general covariance of the Dirac algorithm and the transformation properties of the Dirac bracket. By classical S-Duality transformations we mean a field redefinition that interchanges the equations of motion and its associated Bianchi identities. By working from a first order variational principle and performing the corresponding Dirac analysis we find that the standard electro-magnetic duality can be reformulated as a canonical local transformation. The reduction from this phase space to the original phase space variables coincides with the well known result about duality as a canonical non local transformation. We have also applied our ideas to the bosonic string. These Dualities are not canonical transformations for the Dirac bracket and relate actions with different kinetic terms in the reduced space.Comment: accepted for publication in IJMP

    Spitzer Infrared Spectrograph Detection of Molecular Hydrogen Rotational Emission towards Translucent Clouds

    Get PDF
    Using the Infrared Spectrograph on board the Spitzer Space Telescope, we have detected emission in the S(0), S(1), and S(2) pure-rotational (v = 0-0) transitions of molecular hydrogen (H_2) toward six positions in two translucent high Galactic latitude clouds, DCld 300.2–16.9 and LDN 1780. The detection of these lines raises important questions regarding the physical conditions inside low-extinction clouds that are far from ultraviolet radiation sources. The ratio between the S(2) flux and the flux from polycyclic aromatic hydrocarbons (PAHs) at 7.9 μm averages 0.007 for these six positions. This is a factor of about four higher than the same ratio measured toward the central regions of non-active Galaxies in the Spitzer Infrared Nearby Galaxies Survey. Thus, the environment of these translucent clouds is more efficient at producing rotationally excited H_2 per PAH-exciting photon than the disks of entire galaxies. Excitation analysis finds that the S(1) and S(2) emitting regions are warm (T ≳ 300 K), but comprise no more than 2% of the gas mass. We find that UV photons cannot be the sole source of excitation in these regions and suggest mechanical heating via shocks or turbulent dissipation as the dominant cause of the emission. The clouds are located on the outskirts of the Scorpius-Centaurus OB association and may be dissipating recent bursts of mechanical energy input from supernova explosions. We suggest that pockets of warm gas in diffuse or translucent clouds, integrated over the disks of galaxies, may represent a major source of all non-active galaxy H_2 emission

    On Dual Formulation of Gravity

    Full text link
    In this paper we consider a possibility to construct dual formulation of gravity where the main dynamical field is the Lorentz connection \omega_\mu^{ab} and not that of tetrad e_\mu^a or metric g_\mu\nu. Our approach is based on the usual dualization procedure which uses first order parent Lagrangians but in (Anti) de Sitter space and not in the flat Minkowski one. It turns out that in d=3 dimensions such dual formulation is related with the so called exotic parity-violating interactions for massless spin-2 particles.Comment: 7 pages, plain LaTe

    The Galactic dust as a foreground to Cosmic Microwave Background maps

    Full text link
    We present results obtained with the PRONAOS balloon-borne experiment on interstellar dust. In particular, the submillimeter / millimeter spectral index is found to vary between roughly 1 and 2.5 on small scales (3.5' resolution). This could have implications for component separation in Cosmic Microwave Background maps.Comment: 4 pages, 1 figure, proceeding of the Multi-Wavelength Cosmology conference held in Mykonos, Greece, June 2003, ed. Kluwe

    Response of Two Dams in the 1987 Whittier Narrows Earthquake

    Get PDF
    The 1987 Whittier Narrows earthquake (ML = 5.9) shook two dams, the Puddingstone and Cogswell dams, which were instrumented as part of the California Strong Motion Instrumentation Program (CSMIP). The resulting recorded accelerograms provided a valuable opportunity to investigate and evaluate the accuracy and reliability of conventional geotechnical procedures for evaluation of dynamic response characteristics of earth and rockfill dams. This paper presents the results of these studies, which provide insight regarding current techniques for dynamic soil property evaluation and the applicability of one- and two-dimensional analytical procedures to evaluation of the dynamic response of these types of dams

    Comprehensive analysis of high-performance computing methods for filtered back-projection

    Get PDF
    This paper provides an extensive runtime, accuracy, and noise analysis of Computed To-mography (CT) reconstruction algorithms using various High-Performance Computing (HPC) frameworks such as: "conventional" multi-core, multi threaded CPUs, Compute Unified Device Architecture (CUDA), and DirectX or OpenGL graphics pipeline programming. The proposed algorithms exploit various built-in hardwired features of GPUs such as rasterization and texture filtering. We compare implementations of the Filtered Back-Projection (FBP) algorithm with fan-beam geometry for all frameworks. The accuracy of the reconstruction is validated using an ACR-accredited phantom, with the raw attenuation data acquired by a clinical CT scanner. Our analysis shows that a single GPU can run a FBP reconstruction 23 time faster than a 64-core multi-threaded CPU machine for an image of 1024 X 1024. Moreover, directly programming the graphics pipeline using DirectX or OpenGL can further increases the performance compared to a CUDA implementation
    corecore