49 research outputs found

    Lymphome t/nk primitif du larynx : localisation inhabituelle de lymphome extranodal

    Get PDF
    Nous rapportons un cas de lymphome extranodal T/Nk primitif du larynx. il s’agit d’un patient ĂągĂ© de 22 ans qui s’était prĂ©sentĂ© pour une dysphonie chronique associĂ©e Ă  une dyspnĂ©e inspiratoire. une chimiothĂ©rapie protocole SMiLE avec radiothĂ©rapie ont Ă©tĂ© instituĂ©s avec obtention d’une rĂ©mission complĂšte. Huit mois plus tard, le patient prĂ©sentait une rĂ©cidive de la tumeur avec un oedĂšme palpĂ©bral et une obstruction du canal lacrymonasal. L’évolution a Ă©tĂ© fatale suite Ă  une aspergillose invasive en cours de chimiothĂ©rapie.Mots clĂ©s : lymphome, larynx.A rare case of primary laryngeal T/Nk- cell lymphoma, nasal type is reported. The patient was 22-year old male who presented with dysphonia, dyspnea. Chemotherapy protocol SMiLE and radiotherapy were instituted with complete remission of the tumor. Eight months afterward, he presented with tumor recurrence, palpebral edema, obstruction of the lacrymonasal duct. He died within few days with invasive aspergillosis while he was receiving chemotherapy SMiLE regimen.Keyswords : lymphoma, larynx

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∌20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.publishedVersio

    Collateral circulation: Past and present

    Get PDF
    Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors

    Reconfigurable Secure Video Codec Based on DWT and AES Processor

    No full text
    In this paper, we proposed a secure video codec based on the discrete wavelet transformation (DWT) and the Advanced Encryption Standard (AES) processor. Either, use of video coding with DWT or encryption using AES is well known. However, linking these two designs to achieve secure video coding is leading. The contributions of our work are as follows. First, a new method for image and video compression is proposed. This codec is a synthesis of JPEG and JPEG2000,which is implemented using Huffman coding to the JPEG and DWT to the JPEG2000. Furthermore, an improved motion estimation algorithm is proposed. Second, the encryptiondecryption effects are achieved by the AES processor. AES is aim to encrypt group of LL bands. The prominent feature of this method is an encryption of LL bands by AES-128 (128-bit keys), or AES-192 (192-bit keys), or AES-256 (256-bit keys).Third, we focus on a method that implements partial encryption of LL bands. Our approach provides considerable levels of security (key size, partial encryption, mode encryption), and has very limited adverse impact on the compression efficiency. The proposed codec can provide up to 9 cipher schemes within a reasonable software cost. Latency, correlation, PSNR and compression rate results are analyzed and shown

    Neural network equalization for frequency selective nonlinear MIMO channels

    No full text
    In order to provide high data rate over wireless channels and improve the system capacity, Multiple-Input Multiple-Output (MIMO) wireless communication systems exploit spatial diversity by using multiple transmit and receive antennas. Moreover, to achieve high date rate and fulfill the power, MIMO systems are equipped with High Power Amplifiers (HPAs). However, HPAs cause nonlinear distortions and affect the receiver's performance. In this paper, we investigate the joint effects of HPA nonlinearity and frequency selective channel on the performance of MIMO receiver. Then, we propose two equalization schemes to compensate simultaneously nonlinear distortions and frequency selective channel effects. The first one is based on a feedforward Neural Network (NN) named (NN-MIMO-Receiver) and the second uses NN technique and LMS equalizer (LMS-NN-MIMO). The Levenberg-Marquardt algorithm (LM) is used for neural network training, which has proven [1] to exhibit a very good performance with lower computation complexity and faster convergence than other algorithms used in literature. These proposed methods are compared in term of Symbol Error Rate (SER) running under nonlinear frequency selective channel
    corecore