345 research outputs found

    Creosote Treatment Effect On Hardwood Glulam Beam Properties

    Get PDF
    Flexure tests were conducted to determine the effect of creosote treatment on the performance of Combination A northern red oak, yellow poplar, and red maple glued-laminated (glulam) beams. This testing was conducted in accordance with ASTM D198-84 (ASTM 1987a), and the beams were fabricated in accordance with AITC 119-85 (AITC 1986), ANSI/AITC 190.1-83(AITC 1983b), and AITC 200-83 (AITC 1983a). Shear tests were also conducted on samples taken from the beams to determine the glueline shear strength and percent wood failure (WF).There was no significant difference (P < 0.05) between the modulus of rupture (MOR) of creosote-treated and untreated northern red oak beams. However, the MORs of the creosote-treated red maple and yellow poplar beams were significantly (P < 0.05) higher than those for untreated beams. There was no significant difference (P < 0.05) between the treated and untreated apparent modulus of elasticity (MOE) of each species. Therefore, the post-fabrication creosote treatment process from 145.92 to 215.76 kg/m3 (9.11 to 13.47 pcf) average weight retention did not adversely affect the strength (MOR) or stiffness (MOE) of northern red oak, red maple, and yellow poplar Combination A glulam beams.Glueline shear strengths for treated and untreated specimens of each species met or exceeded minimum performance criteria in AITC 200-83. Creosote treatment significantly (P < 0.05) increased glueline shear strength of red maple, but had no effect on the shear strength of red oak and yellow poplar specimens. Mean percentage wood failure of treated shear specimens was significantly (P < 0.05) greater than of untreated specimens in each species. Mean percentage wood failures of red oak and yellow poplar gluelines exceeded AITC 200-83 performance criteria; percentage wood failure of untreated (48%) and treated (59%) red maple shear specimens did not meet AITC 200-83 performance criteria

    Identification of quantitative trait loci for survival in the mutant dynactin p150Glued mouse model of motor neuron disease.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is the most common degenerative motor neuron disorder. Although most cases of ALS are sporadic, 5-10% of cases are familial, with mutations associated with over 40 genes. There is variation of ALS symptoms within families carrying the same mutation; the disease may develop in one sibling and not in another despite the presence of the mutation in both. Although the cause of this phenotypic variation is unknown, it is likely related to genetic modifiers of disease expression. The identification of ALS causing genes has led to the development of transgenic mouse models of motor neuron disease. Similar to families with familial ALS, there are background-dependent differences in disease phenotype in transgenic mouse models of ALS suggesting that, as in human ALS, differences in phenotype may be ascribed to genetic modifiers. These genetic modifiers may not cause ALS rather their expression either exacerbates or ameliorates the effect of the mutant ALS causing genes. We have reported that in both the G93A-hSOD1 and G59S-hDCTN1 mouse models, SJL mice demonstrated a more severe phenotype than C57BL6 mice. From reciprocal intercrosses between G93A-hSOD1 transgenic mice on SJL and C57BL6 strains, we identified a major quantitative trait locus (QTL) on mouse chromosome 17 that results in a significant shift in lifespan. In this study we generated reciprocal intercrosses between transgenic G59S-hDCTN1 mice on SJL and C57BL6 strains and identified survival QTLs on mouse chromosomes 17 and 18. The chromosome 17 survival QTL on G93A-hSOD1 and G59S-hDCTN1 mice partly overlap, suggesting that the genetic modifiers located in this region may be shared by these two ALS models despite the fact that motor neuron degeneration is caused by mutations in different proteins. The overlapping region contains eighty-seven genes with non-synonymous variations predicted to be deleterious and/or damaging. Two genes in this segment, NOTCH3 and Safb/SAFB1, have been associated with motor neuron disease. The identification of genetic modifiers of motor neuron disease, especially those modifiers that are shared by SOD1 and dynactin-1 transgenic mice, may result in the identification of novel targets for therapies that can alter the course of this devastating illness

    Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors

    Get PDF
    BACKGROUND: Surrogate measures for cardiovascular disease events have the potential to increase greatly the efficiency of clinical trials. A leading candidate for such a surrogate is the progression of intima-media thickness (IMT) of the carotid artery; much experience has been gained with this endpoint in trials of HMG-CoA reductase inhibitors (statins). METHODS AND RESULTS: We examine two separate systems of criteria that have been proposed to define surrogate endpoints, based on clinical and statistical arguments. We use published results and a formal meta-analysis to evaluate whether progression of carotid IMT meets these criteria for HMG-CoA reductase inhibitors (statins). IMT meets clinical-based criteria to serve as a surrogate endpoint for cardiovascular events in statin trials, based on relative efficiency, linkage to endpoints, and congruency of effects. Results from a meta-analysis and post-trial follow-up from a single published study suggest that IMT meets established statistical criteria by accounting for intervention effects in regression models. CONCLUSION: Carotid IMT progression meets accepted definitions of a surrogate for cardiovascular disease endpoints in statin trials. This does not, however, establish that it may serve universally as a surrogate marker in trials of other agents

    Utility of Atherosclerosis Imaging in the Evaluation of High-Density Lipoprotein–Raising Therapies

    Get PDF
    Decreased level of high density-lipoprotein cholesterol (HDL-C) is a rigorous predictor for future cardiovascular events. Much effort is being made to develop HDL-C–raising pharmacotherapies in the attempt to avert the pandemic of atherosclerotic disease. Important properties by which HDL-C–raising compounds are effective involve improvement of cholesterol uptake from macrophages in plaque for transport back to the liver, improvement of endothelial function, and anti-inflammatory effects. Vascular imaging can aid in the determination which HDL-C–raising compounds are effective. Ultrasound and MRI have proved suitable for assessment of structural changes of the vessel wall. Ultrasound can also be used or assessment of endothelial function. 18F-fluordeoxyglucose positron emission tomography has opened up the possibility to assess vessel wall inflammation. In this article we discuss these various imaging techniques and how they can assess efficacy as well as provide pathophysiologic information on the mechanism of action of novel HDL-C–raising drugs

    Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    Get PDF
    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice

    Using Basic Science to Design a Clinical Trial: Baseline Characteristics of Women Enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    Get PDF
    Observational and epidemiological studies suggest that menopausal hormone therapy (MHT) reduces cardiovascular disease (CVD) risk. However, results from prospective trials showed neutral or adverse effects most likely due to differences in participant demographics, such as age, timing of initiation of treatment, and preexisting cardiovascular disease, which reflected in part the lack of basic science information on mechanisms of action of hormones on the vasculature at the time clinical trials were designed. The Kronos Early Estrogen Replacement Study (KEEPS) is a prospective, randomized, controlled trial designed, using findings from basic science studies, to test the hypothesis that MHT when initiated early in menopause reduces progression of atherosclerosis. KEEPS participants are younger, healthier, and within 3 years of menopause thus matching more closely demographics of women in prior observational and epidemiological studies than women in the Women’s Health Initiative hormone trials. KEEPS will provide information relevant to the critical timing hypothesis for MHT use in reducing risk for CVD
    corecore