1,982 research outputs found
Superconductivity in graphene stacks: from the bilayer to graphite
We study the superconducting phase transition, both in a graphene bilayer and
in graphite. For that purpose we derive the mean-field effective potential for
a stack of graphene layers presenting hopping between adjacent sheets. For
describing superconductivity, we assume there is an on-site attractive
interaction between electrons and determine the superconducting critical
temperature as a function of the chemical potential. This displays a
dome-shaped curve, in agreement with previous results for two-dimensional Dirac
fermions. We show that the hopping between adjacent layers increases the
critical temperature for small values of the chemical potential. Finally, we
consider a minimal model for graphite and show that the transition temperature
is higher than that for the graphene bilayer for small values of chemical
potential. This might explain why intrinsic superconductivity is observed in
graphite
An Innovative Interactive Modeling Tool to Analyze Scenario-Based Physician Workforce Supply and Demand
Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models
Pairing symmetry of superconducting graphene
The possibility of intrinsic superconductivity in alkali-coated graphene
monolayers has been recently suggested theoretically. Here, we derive the
possible pairing symmetries of a carbon honeycomb lattice and discuss their
phase diagram. We also evaluate the superconducting local density of states
(LDOS) around an isolated impurity. This is directly related to scanning
tunneling microscopy experiments, and may evidence the occurrence of
unconventional superconductivity in graphene.Comment: Eur. Phys. J. B, to appea
Ultrarelativistic electron-hole pairing in graphene bilayer
We consider ground state of electron-hole graphene bilayer composed of two
independently doped graphene layers when a condensate of spatially separated
electron-hole pairs is formed. In the weak coupling regime the pairing affects
only conduction band of electron-doped layer and valence band of hole-doped
layer, thus the ground state is similar to ordinary BCS condensate. At strong
coupling, an ultrarelativistic character of electron dynamics reveals and the
bands which are remote from Fermi surfaces (valence band of electron-doped
layer and conduction band of hole-doped layer) are also affected by the
pairing. The analysis of instability of unpaired state shows that s-wave
pairing with band-diagonal condensate structure, described by two gaps, is
preferable. A relative phase of the gaps is fixed, however at weak coupling
this fixation diminishes allowing gapped and soliton-like excitations. The
coupled self-consistent gap equations for these two gaps are solved at zero
temperature in the constant-gap approximation and in the approximation of
separable potential. It is shown that, if characteristic width of the pairing
region is of the order of magnitude of chemical potential, then the value of
the gap in the spectrum is not much different from the BCS estimation. However,
if the pairing region is wider, then the gap value can be much larger and
depends exponentially on its energy width.Comment: 13 pages with 8 figures; accepted to Eur. Phys. J.
Chiral superconductivity from repulsive interactions in doped graphene
Author Manuscript 17 Sep 2011Chiral superconductivity, which breaks time-reversal symmetry, can exhibit a wealth of fascinating properties that are highly sought after for nanoscience applications. We identify doped graphene monolayer as a system where chiral superconductivity can be realized. In this material, a unique situation arises at a doping where the Fermi surface is nested and the density of states is singular. In this regime, d-wave superconductivity can emerge from repulsive electron–electron interactions. Using a renormalization group method, we argue that superconductivity dominates over all competing orders for generic weak repulsive interactions. Superconductivity develops simultaneously in two degenerate d-wave pairing channels. We argue that the resulting superconducting state is of chiral type, with the phase of the superconducting order parameter winding by 4π around the Fermi surface. Realization of this state in doped graphene will prove that superconductivity can emerge from electron–electron repulsion, and will open the door to applications of chiral superconductivity
Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory
Solar neutrinos from the decay of B have been detected at the Sudbury
Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium
and by the elastic scattering (ES) of electrons. The CC reaction is sensitive
exclusively to nu_e's, while the ES reaction also has a small sensitivity to
nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC
reaction rate is
\phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6
/cm^2 s.
Assuming no flavor transformation, the flux inferred from the ES reaction
rate is
\phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s.
Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision
value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that
there is a non-electron flavor active neutrino component in the solar flux. The
total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x
10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
- …