3,495 research outputs found

    The role of finite kinematic bounds in the induced gluon emission from fast quarks in a finite size quark-gluon plasma

    Full text link
    We study the influence of finite kinematic boundaries on the induced gluon radiation from a fast quark in a finite size quark-gluon plasma. The calculations are carried out for fixed and running coupling constant. We find that for running coupling constant the kinematic correction to the radiative energy loss is small for quark energy larger than about 5 GeV. Our results differ both analytically and numerically from that obtained by the GLV group [6]. The effect of the kinematic cut-offs is considerably smaller than reported in [6].Comment: 11 pages, 4 figure

    On the Angular Dependence of the Radiative Gluon Spectrum

    Get PDF
    The induced momentum spectrum of soft gluons radiated from a high energy quark produced in and propagating through a QCD medium is reexamined in the BDMPS formalism. A mistake in our published work (Physical Review C60 (1999) 064902) is corrected. The correct dependence of the fractional induced loss R(θcone)R(\theta_{{\rm cone}}) as a universal function of the variable θcone2L3q^\theta^2_{{\rm cone}} L^3 \hat q where LL is the size of the medium and q^\hat q the transport coefficient is presented. We add the proof that the radiated gluon momentum spectrum derived in our formalism is equivalent with the one derived in the Zakharov-Wiedemann approach.Comment: LaTex, 5 pages, 1 figur

    Deciphering the properties of the medium produced in heavy ion collisions at RHIC by a pQCD analysis of quenched large p⊥p_{\perp} π0\pi^0 spectra

    Get PDF
    We discuss the question of the relevance of perturbative QCD calculations for analyzing the properties of the dense medium produced in heavy ion collisions. Up to now leading order perturbative estimates have been worked out and confronted with data for quenched large p⊥p_{\perp} hadron spectra. Some of them are giving paradoxical results, contradicting the perturbative framework and leading to speculations such as the formation of a strongly interacting quark-gluon plasma. Trying to bypass some drawbacks of these leading order analysis and without performing detailed numerical investigations, we collect evidence in favour of a consistent description of quenching and of the characteristics of the produced medium within the pQCD framework.Comment: 10 pages, 3 figure

    Photon splitting in a laser field

    Full text link
    Photon splitting due to vacuum polarization in a laser field is considered. Using an operator technique, we derive the amplitudes for arbitrary strength, spectral content and polarization of the laser field. The case of a monochromatic circularly polarized laser field is studied in detail and the amplitudes are obtained as three-fold integrals. The asymptotic behavior of the amplitudes for various limits of interest are investigated also in the case of a linearly polarized laser field. Using the obtained results, the possibility of experimental observation of the process is discussed.Comment: 31 pages, 4 figure

    Delbr\"uck scattering in combined Coulomb and laser fields

    Full text link
    We study Delbr\"uck scattering in a Coulomb field in the presence of a laser field. The amplitudes are calculated in the Born approximation with respect to the Coulomb field and exactly in the parameters of the laser field having arbitrary strength, spectral content and polarization. The case of high energy initial photon energy is investigated in detail for a monochromatic circularly polarized laser field. It is shown that the angular distribution of the process substantially differs from that for Delbr\"uck scattering in a pure Coulomb field. The value of the cross section under discussion may exceed the latter at realistic laser parameters that essentially simplify the possibility of the experimental observation of the phenomenon. The effect of high order terms in the quantum intensity parameter χ\chi of the laser field is found to be very important already at relatively small χ\chi.Comment: 21 pages, 4 figure

    Energy loss of quarks in deconfined matter at RHIC: photon-tagged jets, single electron and dilepton spectra from open charm

    Get PDF
    We report a first attempt (i) to derive constraints on the energy loss of charm quarks in a deconfined medium from the recent PHENIX data of single-electron transverse momentum spectra and (ii) to estimate the resulting suppression of dileptons from correlated semi-leptonic decays of open charmed mesons. The momentum imbalance of photon-tagged light-quark jets is also considered.Comment: contribution to Quark Matter 2002, Nantes, France, July 18 - 24, 200

    Transverse Spectra of Radiation Processes in Medium

    Get PDF
    We develop a formalism for evaluation of the transverse momentum dependence of cross sections of the radiation processes in medium. The analysis is based on the light-cone path integral approach to the induced radiation. The results are applicable in both QED and QCD

    Anomalous Transport Processes in Anisotropically Expanding Quark-Gluon Plasmas

    Full text link
    We derive an expression for the anomalous viscosity in an anisotropically expanding quark-gluon-plasma, which arises from interactions of thermal partons with dynamically generated color fields. The anomalous viscosity dominates over the collisional viscosity for large velocity gradients or weak coupling. This effect may provide an explanation for the apparent ``nearly perfect'' liquidity of the matter produced in nuclear collisions at RHIC without the assumption that it is a strongly coupled state.Comment: 31 pages, 1 figure, some typos in published version are correcte

    Distinguishing Hidden Markov Chains

    Full text link
    Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HMCs are called distinguishable if for every ε>0\varepsilon > 0 there is a distinguishing algorithm whose error probability is less than ε\varepsilon. We show that one can decide in polynomial time whether two HMCs are distinguishable. Further, we present and analyze two distinguishing algorithms for distinguishable HMCs. The first algorithm makes a decision after processing a fixed number of observations, and it exhibits two-sided error. The second algorithm processes an unbounded number of observations, but the algorithm has only one-sided error. The error probability, for both algorithms, decays exponentially with the number of processed observations. We also provide an algorithm for distinguishing multiple HMCs. Finally, we discuss an application in stochastic runtime verification.Comment: This is the full version of a LICS'16 pape

    Parton energy loss due to synchrotron-like gluon emission

    Full text link
    We develop a quasiclassical theory of the synchrotron-like gluon radiation. Our calculations show that the parton energy loss due to the synchrotron gluon emission may be important in the jet quenching phenomenon if the plasma instabilities generate a sufficiently strong chromomagnetic field. Our gluon spectrum disagrees with that obtained by Shuryak and Zahed within the Schwinger's proper time method.Comment: 11 pages, 3 eps figure
    • …
    corecore