1,468 research outputs found

    Nuclear shell evolution and in-medium NN interaction

    Get PDF
    We report on a quantitative study of the evolution of the nuclear shell structure, in particular, effective single-particle energies (ESPEs), based on the spin-tensor decomposition of an effective two-body shell-model interaction. While the global trend of the ESPEs is mainly due to the central term of the effective interaction, variations of shell gaps invoke various components of the in-medium NN force. From a detailed analysis of a well-fitted realistic interaction in the sdpf shell-model space, two most important contributions for the evolution of the N = 20 and N = 28 shell gaps are confirmed to be the central term and the tensor term. The role of the latter is dominant to explain the energy shift of spin-orbit partners. Spin-tensor analysis of microscopic effective interactions in sd, pf, and gds shell-model spaces, contrasted with that of the phenomenologically adjusted ones, shows no evidence of amplification of the tensor component contribution; however, it points toward the neglect of three-body forces in the present microscopic interactions

    Nested shells reveal the rejuvenation of the Orion-Eridanus superbubble

    Get PDF
    The Orion-Eridanus superbubble is the prototypical superbubble due to its proximity and evolutionary state. Here, we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble, and derive quantitative properties of the gas- and dust inside Barnard's Loop. We reveal that Barnard's Loop is a complete bubble structure which, together with the lambda Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, HII region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass-loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.Comment: 20 pages, 6 figures, accepted for publication in Ap

    Symmetry restoration for odd-mass nuclei with a Skyrme energy density functional

    Full text link
    In these proceedings, we report first results for particle-number and angular-momentum projection of self-consistently blocked triaxial one-quasiparticle HFB states for the description of odd-A nuclei in the context of regularized multi-reference energy density functionals, using the entire model space of occupied single-particle states. The SIII parameterization of the Skyrme energy functional and a volume-type pairing interaction are used.Comment: 8 pages, 3 figures, workshop proceeding

    Bioluminescence Applications in Preclinical Oncology Research

    Get PDF

    Star Formation in the Gulf of Mexico

    Full text link
    We present an optical/infrared study of the dense molecular cloud, L935, dubbed "The Gulf of Mexico", which separates the North America and the Pelican nebulae, and we demonstrate that this area is a very active star forming region. A wide-field imaging study with interference filters has revealed 35 new Herbig-Haro objects in the Gulf of Mexico. A grism survey has identified 41 Halpha emission-line stars, 30 of them new. A small cluster of partly embedded pre-main sequence stars is located around the known LkHalpha 185-189 group of stars, which includes the recently erupting FUor HBC 722.Comment: Submitted to A&A, 14 pages, 18 figure

    Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of 48^{48}Ca

    Full text link
    Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The approach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of 48^{48}Ca to 48^{48}Ti, and find it to have the value 0.610.61, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as 76^{76}Ge, 130^{130}Te, and 136^{136}Xe.Comment: 6 pages, 4 figures and 1 table. supplementary material included. version to be publishe
    • …
    corecore