1,391 research outputs found

    Charge storage characteristics of ultra-small Pt nanoparticle embedded GaAs based non-volatile memory

    Get PDF
    Charge storage characteristics of ultra-small Pt nanoparticle embedded devices were characterized by capacitance-voltage measurements. A unique tilt target sputtering configuration was employed to produce highly homogenous nanoparticle arrays. Pt nanoparticle devices with sizes ranging from ∼0.7 to 1.34 nm and particle densities of ∼3.3–5.9 × 1012 cm−2 were embedded between atomic layer deposited and e-beam evaporated tunneling and blocking Al2O3 layers. These GaAs-based non-volatile memory devices demonstrate maximum memory windows equivalent to 6.5 V. Retention characteristics show that over 80% charged electrons were retained after 105 s, which is promising for device applications

    Tillage Research in Ohio A Guide to the Selection of Profitable Tillage Systems

    Get PDF
    PDF pages: 1

    Synthesis and Use of Diagnostic Radio-Pharmaceuticals Comprising Radioactive Isotopes of Bromine with Dyes

    Get PDF
    A process for preparing bromine-containing dyes labelled with gamma-emitting isotopes of bromine, and the product thereof which is useful as an imaging agent for the hepato-biliary system, particularly in dynamic imaging methods. The dyes prepared are from the class of triarylmethane dyes, and also from the phthalein subclass of the class of xanthene dyes, and the labelling thereof is effected with 76Br, 77 Br or 82 Br. The process for preparing these dyes involves reacting the non-brominated dye precursor with either 76 Br2, 77 Br2 or 82 Br2. This is a substitution type of reaction in which a ring hydrogen is substituted by either 76 Br, 77 Br or 82 Br

    Analysis of the effectiveness of industrial R and D

    Get PDF
    The criteria used by private industry in evaluating and selecting proposed research and development projects for implementation, and also in determining which R and D facilities are to be acquired were investigated. Conceptual and practical issues inherent in any quantitative analysis of the contribution of R and D to economic growth were identified in order to assist NASA in developing approaches for analzying the economic implication of its own R and D efforts

    Crop production demands and the conservation of soil resources in Ohio

    Get PDF

    Visual subcircuit-specific dysfunction and input-specific mispatterning in the superior colliculus of fragile X mice

    Full text link
    Abstract Background Sensory processing deficits are frequently co-morbid with neurodevelopmental disorders. For example, patients with fragile X syndrome (FXS), caused by a silencing of the FMR1 gene, exhibit impairments in visual function specific to the dorsal system, which processes motion information. However, the developmental and circuit mechanisms underlying this deficit remain unclear. Recently, the superior colliculus (SC), a midbrain structure regulating head and eye movements, has emerged as a model for dissecting visual circuit development and function. Previous studies have demonstrated a critical role for activity-dependent processes in the development of visual circuitry in the SC. Based on the known role of the FMR1 gene product in activity-dependent synaptic plasticity, we explored the function and organization of visual circuits in the SC of a mouse model of FXS (Fmr1−/y). Methods We utilized in vivo extracellular electrophysiology in combination with computer-controlled visual stimuli to determine the receptive field properties of visual neurons in the SC of control and Fmr1−/y mice. In addition, we utilized anatomical tracing methods to assess the organization of visual inputs to the SC and along the retinogeniculocortical pathway. Results Receptive fields of visual neurons in the SC of Fmr1−/y mice were significantly larger than those found in control animals, though their shape and structure were unaffected. Further, selectivity for direction of movement was decreased, while selectivity to axis of movement was unchanged. Interestingly, axis-selective (AS) neurons exhibited a specific hyperexcitability in comparison to AS neurons in control SC and to direction-selective (DS) neurons in both control and Fmr1−/y SC. Anatomical tracings revealed that retinocollicular, retinogeniculate, and geniculocortical projections were normally organized in the absence of Fmr1. However, projections from primary visual cortex (V1) to the SC were poorly refined. Conclusions Fmr1 is required for the proper development of visual circuit organization and function in the SC. We find that visual dysfunction is heterogeneously manifested in a subcircuit-specific manner in Fmr1−/y mice, consistent with previous studies in human FXS patients. Further, we show a specific alteration of inputs to the SC from V1, but not the retina. Together, these data suggest that Fmr1 may function in distinct ways during the development of different visual subcircuits.https://deepblue.lib.umich.edu/bitstream/2027.42/144523/1/11689_2018_Article_9241.pd

    Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits.

    Get PDF
    BackgroundThere are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.ResultsWe morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.ConclusionsTaken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation
    • …
    corecore