47 research outputs found

    HATS-5b: A Transiting hot-Saturn from the HATSouth Survey

    Get PDF
    We report the discovery of HATS-5b, a transiting hot-Saturn orbiting a G type star, by the HAT-South survey. HATS-5b has a mass of Mp=0.24 Mj, radius of Rp=0.91 Rj, and transits its host star with a period of P=4.7634d. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V band magnitude of 12.6, mass of 0.94 Msun, and radius of 0.87 Rsun. The relatively high scale height of HATS-5b, and the bright, photometrically quiet host star, make this planet a favourable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas-giants, and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas-giant population.Comment: 10 pages, submitted to A

    HATS-3b: An inflated hot Jupiter transiting an F-type star

    Full text link
    We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightness of the host star, and the stellar rotational velocity (vsini = 9.0km/s), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces logg and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity semi-amplitudes as low as 1 km/s.Comment: 11 pages, 10 figures, submitted to A

    HAT-P-56b: An inflated massive Hot Jupiter transiting a bright F star followed up with K2 Campaign 0 observations

    Get PDF
    We report the discovery of HAT-P-56b by the HATNet survey, an inflated hot Jupiter transiting a bright F type star in Field 0 of NASA's K2 mission. We combine ground-based discovery and follow-up light curves with high precision photometry from K2, as well as ground-based radial velocities from TRES on the FLWO 1.5m telescope to determine the physical properties of this system. HAT-P-56b has a mass of 2.18MJ2.18 M_J, radius of 1.47RJ1.47 R_J, and transits its host star on a near-grazing orbit with a period of 2.7908 d. The radius of HAT-P-56b is among the largest known for a planet with Mp>2MJM_p > 2 M_J. The host star has a V-band magnitude of 10.9, mass of 1.30 MM_\odot, and radius of 1.43 RR_\odot. The periodogram of the K2 light curve suggests the star is a γ\gamma Dor variable. HAT-P-56b is an example of a ground-based discovery of a transiting planet, where space-based observations greatly improve the confidence in the confirmation of its planetary nature, and also improve the accuracy of the planetary parameters.Comment: 13 pages, 11 figures, accepted by A

    HAT-P-47b AND HAT-P-48b: Two Low Density Sub-Saturn-Mass Transiting Planets on the Edge of the Period--Mass Desert

    Get PDF
    We report the discovery of two new transiting extrasolar planets orbiting moderately bright (V = 10.7 and 12.2 mag) F stars (masses of 1.39 Msun and 1.10 Msun, respectively). The planets have periods of P = 4.7322 d and 4.4087 d, and masses of 0.21 MJ and 0.17 MJ which are almost half-way between those of Neptune and Saturn. With radii of 1.31 RJ and 1.13 RJ, these very low density planets are the two lowest mass planets with radii in excess that of Jupiter. Comparing with other recent planet discoveries, we find that sub-Saturns (0.18MJ < Mp < 0.3MJ) and super-Neptunes (0.05MJ < Mp < 0.18MJ) exhibit a wide range of radii, and their radii exhibit a weaker correlation with irradiation than higher mass planets. The two planets are both suitable for measuring the Rossiter-McLaughlin effect and for atmospheric characterization. Measuring the former effect would allow an interesting test of the theory that star-planet tidal interactions are responsible for the tendency of close-in giant planets around convective envelope stars to be on low obliquity orbits. Both planets fall on the edge of the short period Neptunian desert in the semi-major axis-mass plane.Comment: Submitted to AAS Journal

    HAT-P-18b and HAT-P-19b: Two Low-Density Saturn-Mass Planets Transiting Metal-Rich K Stars

    Get PDF
    We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V=12.759 K2 dwarf star GSC 2594-00646, with a period P=5.508023+-0.000006 d, transit epoch Tc=2454715.02174+-0.00020 (BJD), and transit duration 0.1131+-0.0009 d. The host star has a mass of 0.77+-0.03 Msun, radius of 0.75+-0.04 Rsun, effective temperature 4803+-80 K, and metallicity [Fe/H]=+0.10+-0.08. The planetary companion has a mass of 0.197+-0.013 Mjup, and radius of 0.995+-0.052 Rjup yielding a mean density of 0.25+-0.04 g cm-3. HAT-P-19b orbits the V=12.901 K1 dwarf star GSC 2283-00589, with a period P=4.008778+-0.000006 d, transit epoch Tc=2455091.53417+-0.00034 (BJD), and transit duration 0.1182+-0.0014 d. The host star has a mass of 0.84+-0.04 Msun, radius of 0.82+-0.05 Rsun, effective temperature 4990+-130 K, and metallicity [Fe/H]=+0.23+-0.08. The planetary companion has a mass of 0.292+-0.018 Mjup, and radius of 1.132+-0.072 Rjup yielding a mean density of 0.25+-0.04 g cm-3. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets.Comment: 18 pages, 11 figures, 9 tables. Replaced with version accepted for publication in Ap

    HAT-P-17b,c: A Transiting, Eccentric, Hot Saturn and a Long-period, Cold Jupiter

    Get PDF
    We report the discovery of HAT-P-17b,c, a multi-planet system with an inner transiting planet in a short-period, eccentric orbit and an outer planet in a 4.8 yr, nearly circular orbit. The inner planet, HAT-P-17b, transits the bright V = 10.54 early K dwarf star GSC 2717-00417, with an orbital period P = 10.338523 +/- 0.000009 d, orbital eccentricity e = 0.346 +/- 0.007, transit epoch T_c = 2454801.16945 +/- 0.00020, and transit duration 0.1691 +/- 0.0009 d. HAT-P-17b has a mass of 0.530 +/- 0.018 M_J and radius of 1.010 +/- 0.029 R_J yielding a mean density of 0.64 +/- 0.05 g cm^-3. This planet has a relatively low equilibrium temperature in the range 780-927 K, making it an attractive target for follow-up spectroscopic studies. The outer planet, HAT-P-17c, has a significantly longer orbital period P_2 = 1797^+58_-89 d and a minimum mass m_2 sin i_2 = 1.4^+1.1_-0.4 M_J. The orbital inclination of HAT-P-17c is unknown as transits have not been observed and may not be present. The host star has a mass of 0.86 +/- 0.04 M_Sun, radius of 0.84 +/- 0.02, effective temperature 5246 +/- 80 K, and metallicity [Fe/H] = 0.00 +/- 0.08. HAT-P-17 is the second multi-planet system detected from ground-based transit surveys.Comment: Submitted to ApJ, 13 pages, 6 figures, 6 table

    HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars

    Get PDF
    We report the discovery of two exoplanets transiting high-jitter stars. HAT-P-32b orbits the bright V = 11.289 late-F-early-G dwarf star GSC 3281-00800, with a period P = 2.150008 ± 0.000001 d. The stellar and planetary masses and radii depend on the eccentricity of the system, which is poorly constrained due to the high-velocity jitter (~80 m s^(–1)). Assuming a circular orbit, the star has a mass of 1.16 ± 0.04 M_☉ and radius of 1.22 ± 0.02 R_☉, while the planet has a mass of 0.860 ± 0.164 M_J and a radius of 1.789 ± 0.025 R_J. The second planet, HAT-P-33b, orbits the bright V = 11.188 late-F dwarf star GSC 2461-00988, with a period P = 3.474474 ± 0.000001 d. As for HAT-P-32, the stellar and planetary masses and radii of HAT-P-33 depend on the eccentricity, which is poorly constrained due to the high jitter (~50 m s^(–1)). In this case, spectral line bisector spans (BSs) are significantly anti-correlated with the radial velocity residuals, and we are able to use this correlation to reduce the residual rms to ~35 m s^(–1). We find that the star has a mass of 1.38 ± 0.04 M_☉ and a radius of 1.64 ± 0.03 R_☉ while the planet has a mass of 0.762 ± 0.101 M_J and a radius of 1.686 ± 0.045 R_J for an assumed circular orbit. Due to the large BS variations exhibited by both stars we rely on detailed modeling of the photometric light curves to rule out blend scenarios. Both planets are among the largest radii transiting planets discovered to date

    Hat-P-25b: A Hot-Jupiter Transiting a Moderately Faint G Star

    Get PDF
    We report the discovery of HAT-P-25b, a transiting extrasolar planet orbiting the V = 13.19 G5 dwarf star GSC 1788-01237, with a period P = 3.652836 ± 0.000019 days, transit epoch T_c = 2455176.85173 ± 0.00047 (BJD—barycentric Julian dates throughout the paper are calculated from Coordinated Universal Time, UTC), and transit duration 0.1174 ± 0.0017 days. The host star has a mass of 1.01 ± 0.03 M_☉, radius of 0.96^(+0.05)_(– 0.04) R_☉, effective temperature 5500 ± 80 K, and metallicity [Fe/H] = +0.31 ± 0.08. The planetary companion has a mass of 0.567 ± 0.022 M_J and radius of 1.190^(+0.081)_(–0.056) R_J yielding a mean density of 0.42 ± 0.07 g cm^(–3)

    HAT-P31bc:A Transiting, Eccentric, Hot Jupiter and a Long-Period, Massive Third Body

    Get PDF
    We report the discovery of HAT-P-31b, a transiting exoplanet orbiting the V = 11.660 dwarf star GSC 2099-00908. HAT-P-31b is the first planet discovered with the Hungarian-made Automated Telescope (HAT) without any follow-up photometry, demonstrating the feasibility of a new mode of operation for the HATNet project. The 2.17 M_J , 1.1 R_J planet has a period of P_b = 5.0054 days and maintains an unusually high eccentricity of e_b = 0.2450 ± 0.0045, determined through Keck, FIbr-fed Échelle Spectrograph, and Subaru high-precision radial velocities (RVs). Detailed modeling of the RVs indicates an additional quadratic residual trend in the data detected to very high confidence. We interpret this trend as a long-period outer companion, HAT-P-31c, of minimum mass 3.4 M_J and period ≥2.8 years. Since current RVs span less than half an orbital period, we are unable to determine the properties of HAT-P-31c to high confidence. However, dynamical simulations of two possible configurations show that orbital stability is to be expected. Further, if HAT-P-31c has non-zero eccentricity, our simulations show that the eccentricity of HAT-P-31b is actively driven by the presence of c, making HAT-P-31 a potentially intriguing dynamical laboratory

    Hat-P-20b-Hat-p-23b: Four Massive Transiting Extrasolar Planets

    Get PDF
    We report the discovery of four relatively massive (2-7 M J) transiting extrasolar planets. HAT-P-20b orbits the moderately bright V = 11.339 K3 dwarf star GSC 1910-00239 on a circular orbit, with a period P = 2.875317 ± 0.000004 days, transit epoch T_c = 2455080.92661 ± 0.00021 (BJD_(UTC)), and transit duration 0.0770 ± 0.0008 days. The host star has a mass of 0.76 ± 0.03 M_☉, radius of 0.69 ± 0.02 R_☉, effective temperature 4595 ± 80 K, and metallicity [Fe/H] = +0.35 ± 0.08. The planetary companion has a mass of 7.246 ± 0.187 M_J and a radius of 0.867 ± 0.033 R_J yielding a mean density of 13.78 ± 1.50 g cm^(–3). HAT-P-21b orbits the V = 11.685 G3 dwarf star GSC 3013-01229 on an eccentric (e = 0.228 ± 0.016) orbit, with a period P = 4.124481 ± 0.000007 days, transit epoch T_c = 2454996.41312 ± 0.00069, and transit duration 0.1530 ± 0.0027 days. The host star has a mass of 0.95 ± 0.04 M_☉, radius of 1.10 ± 0.08 R_☉, effective temperature 5588 ± 80 K, and metallicity [Fe/H] = +0.01 ± 0.08. The planetary companion has a mass of 4.063 ± 0.161 M_J and a radius of 1.024 ± 0.092 R_J yielding a mean density of 4.68^(+1.59)_(–0.99) g cm^(-3). HAT-P-21b is a borderline object between the pM and pL class planets, and the transits occur near apastron. HAT-P-22b orbits the bright V = 9.732 G5 dwarf star HD 233731 on a circular orbit, with a period P = 3.212220 ± 0.000009 days, transit epoch T_c = 2454930.22001 ± 0.00025, and transit duration 0.1196 ± 0.0014 days. The host star has a mass of 0.92 ± 0.03 M_☉, radius of 1.04 ± 0.04 R_☉, effective temperature 5302 ± 80 K, and metallicity [Fe/H] = +0.24 ± 0.08. The planet has a mass of 2.147 ± 0.061 M_J and a compact radius of 1.080 ± 0.058 R_J yielding a mean density of 2.11^(+0.40)_(–0.29) g cm^(–3). The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits the V = 12.432 G0 dwarf star GSC 1632-01396 on a close to circular orbit, with a period P = 1.212884 ± 0.000002 days, transit epoch T_c = 2454852.26464 ± 0.00018, and transit duration 0.0908 ± 0.0007 days. The host star has a mass of 1.13 ± 0.04 M_☉, radius of 1.20 ± 0.07 R_☉, effective temperature 5905 ± 80 K, and metallicity [Fe/H] = +0.15 ± 0.04. The planetary companion has a mass of 2.090 ± 0.111 M_J and a radius of 1.368 ± 0.090 R_J yielding a mean density of 1.01 ± 0.18 g cm^(–3). HAT-P-23b is an inflated and massive hot Jupiter on a very short period orbit, and has one of the shortest characteristic infall times (7.5^(+2.9)_(–1.8) Myr) before it gets engulfed by the star
    corecore