159 research outputs found

    Holocene slip rate variability along the Pernicana fault system (Mt. Etna, Italy): Evidence from offset lava flows

    Get PDF
    The eastern flank of the Mount Etna stratovolcano is affected by extension and is slowly sliding eastward into the Ionian Sea. The Pernicana fault system forms the border of the northern part of this sliding area. It consists of three E-W−oriented fault sectors that are seismically active and characterized by earthquakes up to 4.7 in magnitude (M) capable of producing ground rupture and damage located mainly along the western and central sectors, and by continuous creep on the eastern sector. A new topographic study of the central sector of the Pernicana fault system shows an overall bell-shaped profile, with maximum scarp height of 35 m in the center of the sector, and two local minima that are probably due to the complex morphological relation between fault scarp and lava flows. We determined the ages of lava flows cut by the Pernicana fault system at 12 sites using cosmogenic 3He and 40Ar/39Ar techniques in order to determine the recent slip history of the fault. From the displacement-age relations, we estimate an average throw rate of ∼2.5 mm/yr over the last 15 k.y. The slip rate appears to have accelerated during the last 3.5 k.y., with displacement rates of up to ∼15 mm/yr, whereas between 3.5 and 15 ka, the throw rate averaged ∼1 mm/yr. This increase in slip rate resulted in significant changes in seismicity rates, for instance, decreasing the mean recurrence time of M ≥ 4.7 earthquakes from ∼200 to ∼20 yr. Based on empirical relationships, we attribute the variation in seismic activity on the Pernicana fault system to factors intrinsic to the system that are likely related to changes in the volcanic system. These internal factors could be fault interdependencies (such as those across the Taupo Rift, New Zealand) or they could represent interactions among magmatic, tectonic, and gravitational processes (e.g., Kīlauea volcano, Hawaii). Given their effect on earthquake recurrence intervals, these interactions need to be fully assessed in seismic hazard evaluations

    Three Different Types of Galaxy Alignment within Dark Matter Halos

    Full text link
    Using a large galaxy group catalogue based on the Sloan Digital Sky Survey Data Release 4 we measure three different types of intrinsic galaxy alignment within groups: halo alignment between the orientation of the brightest group galaxies (BGG) and the distribution of its satellite galaxies, radial alignment between the orientation of a satellite galaxy and the direction towards its BGG, and direct alignment between the orientation of the BGG and that of its satellites. In agreement with previous studies we find that satellite galaxies are preferentially located along the major axis. In addition, on scales r < 0.7 Rvir we find that red satellites are preferentially aligned radially with the direction to the BGG. The orientations of blue satellites, however, are perfectly consistent with being isotropic. Finally, on scales r < 0.1 \Rvir, we find a weak but significant indication for direct alignment between satellites and BGGs. We briefly discuss the implications for weak lensing measurements.Comment: 4 pages, 4 figures, ApJL accepte

    Spatial and kinematic alignments between central and satellite halos

    Full text link
    Based on a cosmological N-body simulation we analyze spatial and kinematic alignments of satellite halos within six times the virial radius of group size host halos (Rvir). We measure three different types of spatial alignment: halo alignment between the orientation of the group central substructure (GCS) and the distribution of its satellites, radial alignment between the orientation of a satellite and the direction towards its GCS, and direct alignment between the orientation of the GCS and that of its satellites. In analogy we use the directions of satellite velocities and probe three further types of alignment: the radial velocity alignment between the satellite velocity and connecting line between satellite and GCS, the halo velocity alignment between the orientation of the GCS and satellite velocities and the auto velocity alignment between the satellites orientations and their velocities. We find that satellites are preferentially located along the major axis of the GCS within at least 6 Rvir (the range probed here). Furthermore, satellites preferentially point towards the GCS. The most pronounced signal is detected on small scales but a detectable signal extends out to 6 Rvir. The direct alignment signal is weaker, however a systematic trend is visible at distances < 2 Rvir. All velocity alignments are highly significant on small scales. Our results suggest that the halo alignment reflects the filamentary large scale structure which extends far beyond the virial radii of the groups. In contrast, the main contribution to the radial alignment arises from the adjustment of the satellite orientations in the group tidal field. The projected data reveal good agreement with recent results derived from large galaxy surveys. (abridged)Comment: accepted for publication in Ap

    When probabilistic seismic hazard climbs volcanoes: the Mt. Etna case, Italy – Part 2: Computational implementation and first results

    Get PDF
    Abstract. This paper describes the model implementation and presents results of a probabilistic seismic hazard assessment (PSHA) for the Mt. Etna volcanic region in Sicily, Italy, considering local volcano-tectonic earthquakes. Working in a volcanic region presents new challenges not typically faced in standard PSHA, which are broadly due to the nature of the local volcano-tectonic earthquakes, the cone shape of the volcano and the attenuation properties of seismic waves in the volcanic region. These have been accounted for through the development of a seismic source model that integrates data from different disciplines (historical and instrumental earthquake datasets, tectonic data, etc.; presented in Part 1, by Azzaro et al., 2017) and through the development and software implementation of original tools for the computation, such as a new ground-motion prediction equation and magnitude–scaling relationship specifically derived for this volcanic area, and the capability to account for the surficial topography in the hazard calculation, which influences source-to-site distances. Hazard calculations have been carried out after updating the most recent releases of two widely used PSHA software packages (CRISIS, as in Ordaz et al., 2013; the OpenQuake engine, as in Pagani et al., 2014). Results are computed for short- to mid-term exposure times (10 % probability of exceedance in 5 and 30 years, Poisson and time dependent) and spectral amplitudes of engineering interest. A preliminary exploration of the impact of site-specific response is also presented for the densely inhabited Etna's eastern flank, and the change in expected ground motion is finally commented on. These results do not account for M  >  6 regional seismogenic sources which control the hazard at long return periods. However, by focusing on the impact of M  <  6 local volcano-tectonic earthquakes, which dominate the hazard at the short- to mid-term exposure times considered in this study, we present a different viewpoint that, in our opinion, is relevant for retrofitting the existing buildings and for driving impending interventions of risk reduction

    Probing the Intrinsic Shape and Alignment of Dark Matter Haloes using SDSS Galaxy Groups

    Full text link
    We study the three-dimensional and projected shapes of galaxy groups in the Sloan Digital Sky Survey Data Release 4, and examine the alignment between the orientation of the central galaxy and the spatial distribution of satellite galaxies. The projected ellipticity of a group is measured using the moments of the discrete distribution of its member galaxies. We infer the three-dimensional and projected axis ratios of their dark matter haloes by comparing the measured ellipticity distributions with those obtained from Monte Carlo simulations of projected, triaxial dark matter haloes with different axis ratios. We find that the halo shape has a strong dependence on the halo mass. While the haloes of low-mass groups are nearly spherical, those of massive groups tend to be prolate. For groups containing at least four members, the statistical distribution of their measured ellipticities does not have a strong dependence on the colors of their central galaxies. Our analysis further shows that the average three-dimensional axis ratio for haloes with 12<log[M/(h−1M⊙)]≤1512<{\rm log}[M/(h^{-1}M_{\odot})]\leq15 is about 1:0.46:0.461:0.46:0.46, resulting in a projected axis ratio of ∼0.77\sim 0.77. Our results for the alignment between the orientation of the central galaxy of a group and the distribution of their satellite galaxies are in broad agreement with those obtained by Yang et al. The distribution of satellite galaxies preferentially aligns with the major axis of the central galaxy, with a clear dependence on both halo mass and galaxy colors. (abridged)Comment: 13 pages, 10 figures and 2 tables. Accepted for publication in MNRA

    A candidate super-Earth planet orbiting near the snow line of Barnard’s star

    Get PDF
    Barnard’s star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard’s star is also among the least magnetically active red dwarfs known and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging, astrometry and direct imaging, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard’s star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard’s star, making it an excellent target for direct imaging and astrometric observations in the future. © 2018, Springer Nature Limited.The results are based on observations made with the CARMENES instrument at the 3.5-m telescope of the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain), funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union and the CARMENES Consortium members; the 90-cm telescope at the Sierra Nevada Observatory (Granada, Spain) and the 40-cm robotic telescope at the SPACEOBS observatory (San Pedro de Atacama, Chile), both operated by the Instituto de Astrofisica de Andalucia (IAA); and the 80-cm Joan Oro Telescope (TJO) of the Montsec Astronomical Observatory (OAdM), owned by the Generalitat de Catalunya and operated by the Institute of Space Studies of Catalonia (IEEC). This research was supported by the following institutions, grants and fellowships: Spanish MINECO ESP2016-80435-C2-1-R, ESP2016-80435-C2-2-R, AYA2016-79425-C3-1-P, AYA2016-79245-C3-2-P, AYA2016-79425-C3-3-P, AYA2015-69350-C3-2-P, ESP2014-54362-P, AYA2014-56359-P, RYC-2013-14875; Generalitat de Catalunya/CERCA programme; Fondo Europeo de Desarrollo Regional (FEDER); German Science Foundation (DFG) Research Unit FOR2544, project JE 701/3-1; STFC Consolidated Grants ST/P000584/1, ST/P000592/1, ST/M001008/1; NSF AST-0307493; Queen Mary University of London Scholarship; Perren foundation grant; CONICYT-FONDECYT 1161218, 3180405; Swiss National Science Foundation (SNSF); Koshland Foundation and McDonald-Leapman grant; and NASA Hubble Fellowship grant HST-HF2-51399.001. J.T. is a Hubble Fellow
    • …
    corecore