827 research outputs found

    Anisotropic Homogeneous Turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors

    Get PDF
    We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flow. We achieved an homogeneous and anisotropic statistical ensemble by randomly shifting the forcing phases. We observe high intermittency as a function of the order of the velocity correlation within each fixed anisotropic sector and a hierarchical organization of scaling exponents at fixed order of the velocity correlation at changing the anisotropic sector.Comment: 6 pages, 3 eps figure

    Statistical conservation laws in turbulent transport

    Full text link
    We address the statistical theory of fields that are transported by a turbulent velocity field, both in forced and in unforced (decaying) experiments. We propose that with very few provisos on the transporting velocity field, correlation functions of the transported field in the forced case are dominated by statistically preserved structures. In decaying experiments (without forcing the transported fields) we identify infinitely many statistical constants of the motion, which are obtained by projecting the decaying correlation functions on the statistically preserved functions. We exemplify these ideas and provide numerical evidence using a simple model of turbulent transport. This example is chosen for its lack of Lagrangian structure, to stress the generality of the ideas

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    Energy ejection in the collapse of a cold spherical self-gravitating cloud

    Full text link
    When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may in principle be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depends on the initial conditions, for the one parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as N^{-1/3}, a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the infinite N limit) are assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to N^{1/3}, while the fraction of the initial mass ejected grows only very slowly with N, approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time dependent potential of an already re-expanding central core. Using modified initial configurations we explore the importance of fluctuations at different scales, and discreteness (i.e. non-Vlasov) effects in the dynamics.Comment: 20 pages, 27 figures; revised version with small changes and corrections, to appear in MNRA

    Anisotropy in Homogeneous Rotating Turbulence

    Full text link
    The effective stress tensor of a homogeneous turbulent rotating fluid is anisotropic. This leads us to consider the most general axisymmetric four-rank ``viscosity tensor'' for a Newtonian fluid and the new terms in the turbulent effective force on large scales that arise from it, in addition to the microscopic viscous force. Some of these terms involve couplings to vorticity and others are angular momentum non conserving (in the rotating frame). Furthermore, we explore the constraints on the response function and the two-point velocity correlation due to axisymmetry. Finally, we compare our viscosity tensor with other four-rank tensors defined in current approaches to non-rotating anisotropic turbulence.Comment: 14 pages, RevTe

    Derivative moments in turbulent shear flows

    Full text link
    We propose a generalized perspective on the behavior of high-order derivative moments in turbulent shear flows by taking account of the roles of small-scale intermittency and mean shear, in addition to the Reynolds number. Two asymptotic regimes are discussed with respect to shear effects. By these means, some existing disagreements on the Reynolds number dependence of derivative moments can be explained. That odd-order moments of transverse velocity derivatives tend not vanish as expected from elementary scaling considerations does not necessarily imply that small-scale anisotropy persists at all Reynolds numbers.Comment: 11 pages, 7 Postscript figure

    Dynamical equations for high-order structure functions, and a comparison of a mean field theory with experiments in three-dimensional turbulence

    Full text link
    Two recent publications [V. Yakhot, Phys. Rev. E {\bf 63}, 026307, (2001) and R.J. Hill, J. Fluid Mech. {\bf 434}, 379, (2001)] derive, through two different approaches that have the Navier-Stokes equations as the common starting point, a set of steady-state dynamic equations for structure functions of arbitrary order in hydrodynamic turbulence. These equations are not closed. Yakhot proposed a "mean field theory" to close the equations for locally isotropic turbulence, and obtained scaling exponents of structure functions and an expression for the tails of the probability density function of transverse velocity increments. At high Reynolds numbers, we present some relevant experimental data on pressure and dissipation terms that are needed to provide closure, as well as on aspects predicted by the theory. Comparison between the theory and the data shows varying levels of agreement, and reveals gaps inherent to the implementation of the theory.Comment: 16 pages, 23 figure

    Universality and saturation of intermittency in passive scalar turbulence

    Full text link
    The statistical properties of a scalar field advected by the non-intermittent Navier-Stokes flow arising from a two-dimensional inverse energy cascade are investigated. The universality properties of the scalar field are directly probed by comparing the results obtained with two different types of injection mechanisms. Scaling properties are shown to be universal, even though anisotropies injected at large scales persist down to the smallest scales and local isotropy is not fully restored. Scalar statistics is strongly intermittent and scaling exponents saturate to a constant for sufficiently high orders. This is observed also for the advection by a velocity field rapidly changing in time, pointing to the genericity of the phenomenon. The persistence of anisotropies and the saturation are both statistical signatures of the ramp-and-cliff structures observed in the scalar field.Comment: 4 pages, 8 figure

    Computing Topology Preservation of RBF Transformations for Landmark-Based Image Registration

    Full text link
    In image registration, a proper transformation should be topology preserving. Especially for landmark-based image registration, if the displacement of one landmark is larger enough than those of neighbourhood landmarks, topology violation will be occurred. This paper aim to analyse the topology preservation of some Radial Basis Functions (RBFs) which are used to model deformations in image registration. Mat\'{e}rn functions are quite common in the statistic literature (see, e.g. \cite{Matern86,Stein99}). In this paper, we use them to solve the landmark-based image registration problem. We present the topology preservation properties of RBFs in one landmark and four landmarks model respectively. Numerical results of three kinds of Mat\'{e}rn transformations are compared with results of Gaussian, Wendland's, and Wu's functions
    corecore