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Anisotropic Homogeneous Turbulence: Hierarchy and Intermittency of Scaling Exponents
in the Anisotropic Sectors
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We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous tur-
bulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering
of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flow. We
achieved an homogeneous and anisotropic statistical ensemble by randomly shifting the forcing phases.
We observe high intermittency as a function of the order of the velocity correlation within each fixed
anisotropic sector and a hierarchical organization of scaling exponents at fixed order of the velocity
correlation at changing the anisotropic sector.
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At the basis of the 1941 Kolmogorov theory there
is the idea of restoring the universality and isotropy at
small scales in turbulent flows. Memory of large scale
anisotropic forcing and/or boundary conditions should be
quickly lost during the process of energy transfer toward
small scales, with the overall result being a local recover-
ing of isotropy and universality for turbulent fluctuations at
small enough scales and large enough Reynolds numbers.

In recent years, a quantitative investigation of restoring
the isotropy in experimental anisotropic turbulence [1,2],
numerical homogeneous shear flows [3,4], and numerical
channel flows [5] questioned the main Kolmogorov para-
digm, speaking explicitly of persistence of anisotropies.
Some theoretical work has also been done [6] in order to
understand how to properly link the invariance under rota-
tion [SO(3) symmetry group] of the Navier-Stokes equa-
tions and the analysis of anisotropic fluctuations of velocity
turbulence correlations. The observed anisotropic effects
in small scale turbulence are both a theoretical challenge
and a very actual practical problem, opening the question
whether any realistic, anisotropic turbulent flows can ever
possess statistical features independent of the (anisotropic)
boundary and forcing effects. This goes under the name
of universality.

Neglected anisotropic effects in high Reynolds number
flows have also been proposed to be at the origin of dif-
ferent statistical properties measured for transversal and
longitudinal velocity fluctuations [7]. Importance of prop-
erly disentangling isotropic and anisotropic fluctuations
has also been demonstrated in the analysis of intermittency
in channel flow turbulence [8].

An important step forward in the analysis of anisotropic
fluctuations has recently been done in Kraichnan models,
i.e., passive scalars/vectors advected by isotropic, Gauss-
ian, and white-in-time velocity fields with large scale
anisotropic forcing [9–14].

In those models, anomalous scaling arises as the result
of a nontrivial null-space structure of the advecting opera-
0031-9007�01�86(21)�4831(4)$15.00
tor. In these cases, correlation functions in different sectors
of the rotational group show different scaling properties.
Scaling exponents are universal: they do not depend on
the actual value of forcing and boundary conditions, and
they are fully characterized by the order of the anisotropy.
Nonuniversal effects are felt only in coefficients multiply-
ing the power laws. Coefficients are fixed, in principle, by
requiring matching with nonuniversal boundary conditions
in the large scale region.

Similar problems, such as the very existence of scaling
laws in the anisotropic sectors and, if any, what are the val-
ues of the scaling exponents and what is the dependency
from universal/nonuniversal effects, are at the forefront of
experimental, numerical, and theoretical research in true
turbulent flows. Only a few indirect experimental inves-
tigations of scaling in different sectors [15,16] and direct
decomposition in channel flow simulations [5,8,17] have,
at the moment, been attempted.

The situation is still unclear: evidences of a clear im-
proving of scaling laws by isolating the isotropic sector
have been reported, supporting the idea that the unde-
composed correlations are strongly affected by the su-
perposition of isotropic and anisotropic fluctuations [8].
Preliminary evidences of the existence of a scaling law
also in the sectors with total angular momentum j � 2
have been reported [15,16], with the value of the exponent
for the second order correlation function being close to the
dimensional estimates j

j�2
2 � 4�3 [18]. All these pre-

liminary investigations in real turbulent flows are flawed
by the contemporary presence of anisotropies and strong
nonhomogeneities. The very existence of scaling laws in
the presence of strong nonhomogeneous effects can be
doubted. SO(3) decomposition soon becomes intractable
as nonhomogeneous effects cannot be neglected [6]. More-
over, in many experimental situations, anisotropies are in-
troduced by a shear forcing coupled to all turbulent scales:
something which prevents the possibility to study “pure”
inertial physics. To overcome this problem we performed
© 2001 The American Physical Society 4831
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the first numerical investigation of a turbulent flow with
strong anisotropic forcing confined to large scales and per-
fectly homogeneous on a numerical resolution 1283 and
2563. We studied a fully periodic Kolmogorov flow with
random, delta correlated in time, forcing phases, which we
decide to call a “random Kolmogorov flow” (RKF).

In this Letter we present direct measurement of scal-
ing exponents in sectors up to total angular momentum
j � 6. Our main results support the existence of a hierar-
chical organization of exponents, i.e., continuous increase
of exponents as a function of j. We also found a much
stronger intermittency in the anisotropic sectors than in the
isotropic one. We conclude with a few comments and pro-
posals for further work in the field. Let us begin to expose
a few technical details on the simulations. We performed
a direct numerical simulation of a fully periodic flow with
anisotropic large scales forcing. In detail, we have cho-
sen a random forcing pointing only in one direction, the z
axis, with spatial dependency on the x̂ direction only on
two wave numbers k1 � �1, 0, 0�, k2 � �2, 0, 0�. Namely,
fi�k1,2� � di,3f1,2 exp�iu1,2� where f1, f2 are two constant
amplitudes and u1, u2 are two random phases, delta cor-
related in time. The random phases allow for a homo-
geneous statistics also in the otherwise nonhomogeneous
direction spanned by the two wave numbers, i.e., we have
instantaneously a large scale nonhomogeneity in the x di-
rection which is averaged out by the time evolution thanks
to the random reshuffling of the forcing phases. We stud-
ied the RKF at resolution 1283 and 2563; we collected
up to 200 eddy turnover times for the smallest resolution
and up to 50 eddy turnover times for the largest resolu-
tion. Such a long averaging is necessary because as in any
strongly anisotropic flow we observe the formation of per-
sistent large scale structures inducing strong oscillation of
the mean energy in time [3].

In Fig. 1 we show, for example, a typical time evolu-
tion for the total energy and total energy dissipation in our
runs. It is interesting to notice how the high frequency os-
cillations at large scales (total energy) induced by the ran-
dom forcing are completely absent at small scales (energy
dissipation).

In order to increase the scaling range extension we have
used an hyperviscosity with a squared Laplacian. The
inset of Fig. 1 quantifies our degree of homogeneity. We
have a high degree of homogeneity (more than 95%) in
the two transverse directions, ŷ, ẑ, while we still observe
small oscillations in the x̂ directions (of the order of 10%);
these oscillations are due to statistical fluctuations induced
by the external forcing. They must be averaged out in the
limit of infinite statistics.

Let us now discuss the SO(3) decomposition of longitu-
dinal structure functions:

Sp�r� � ���y�x� 2 y�x 1 r�� ? r̂�p	 , (1)

where we have kept only the dependency on r neglecting
the small nonhomogeneous fluctuations. We expect that
4832
FIG. 1. Typical energy (above) and energy dissipation (below)
time evolution in arbitrary units of the random Kolmogorov flow
at resolution Lx � Ly � Lz � 256. Inset: root mean squared
velocity �y2

x 	 as a function of the spatial location in the three di-
rections: �y2

x �x�Lx�	 (3); �y2
x � y�Ly�	 (�); �y2

x �z�Lz�	 (1). For
comparison the same quantity is also shown (�) from experi-
mental state-of-the-art anisotropic homogeneous shear flow at
changing the position along the shear direction ŷ [2]. All curves
are normalized to be 1 at x�Lx � y�Ly � z�Lz � 0.5.

the undecomposed structure functions are not the “scal-
ing” bricks in the theory. Theoretical and numerical analy-
sis showed that one must first decompose the structure
functions on the irreducible representations of the rota-
tional group and then ask about the scaling behavior of
the projection. In practice, being the longitudinal struc-
ture functions scalar objects, their decompositions reduce
to the projections on the spherical harmonics:

Sp�r� �
X̀

j�0

jX

m�2j

Sjm
p �jrj�Yjm�r̂� , (2)

where we have used the indices j, m to label the total angu-
lar momentum and its projection on a reference axis, say ẑ,
respectively. The whole physical information is hidden in
the coefficients S

jm
p �jrj�. In particular, the main question

we want to address here concerns their scaling properties:
S

jm
p �jrj� 
 Ajmjrjj

j � p� and (in the case) what one can say
about the values of the scaling exponents and their robust-
ness against large scale physics (universality issue). Theo-
retical arguments suggest that if scaling exponents exist
they depend only on the j eigenvalue [19]. If true turbu-
lence follows the Kraichnan models behavior, we should
expect universality of the scaling exponents (independence
of large scale boundaries): no saturation of the hierarchy
[jj�p� , jj0�p� if j , j0] and strong nonuniversalities in
the prefactors Ajm.

We first present in Fig. 2 results concerning the isotropic
sector, j � 0, m � 0, comparing the undecomposed struc-
ture functions in the three directions with the projection
S00

p �jrj� and their logarithmic local slopes (inset). Only for
the projected correlation is it possible to measure (5% of
accuracy) the scaling exponents by a direct log-log fit ver-
sus the scale separation jrj. The best fit gives jj�0�2� �
0.70 6 0.03. The undecomposed structure functions are
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FIG. 2. Isotropic sector. Log-log plot of S
0,0
2 �jrj� versus jrj

(1), and the three undecomposed longitudinal structure func-
tions in the three directions x, y, z ��, �, 3�, respectively, at
resolution 2563. The straight line has the best fit slope jj�0�2� �
0.70. Inset: logarithmic local slopes of all curves (same sym-
bols, labels p � 2) plus the straight line corresponding to the
intermittent isotropic scaling, 0.69. Notice the dramatic im-
provement in the scaling behavior of the projected correlation.
Similar results hold for higher orders p . 2. Only the slope
of the decomposed p � 4 is shown (�) (compared with the
isotropic intermittent scaling 1.28, horizontal dashed line).

overwhelmed by anisotropic effects at all scales which
spoil completely the scaling behavior.

In Fig. 3 we present an overview of all sectors j, m
which have a signal-to-noise ratio high enough to ensure
stable results [20]. Sectors with odd j’s are absent due
to the parity symmetry of our observable. We measure
anisotropic fluctuations up to j � 6. We notice from Fig. 3
a clear foliation in terms of the j index: sectors with the
same j but different m’s behave very similarly [19]. In
Table I we present a more quantitative analysis by showing
the results for the best power law fit for structure functions
of orders p � 2, 4. The first result we notice is the absence
of any saturation for the exponents as a function of the j
value. Unfortunately the presence of an oscillation in all
j � 2 sectors prevents us from measuring with accuracy
the exponents in this sector; we therefore refrain from
giving any number in this case.

Let us also notice that the values for j � 4 and j � 6
are different from what one would have expected if the
anisotropic effects would be given by simple smooth large
scale fluctuations (see Table I). This fact leads to the
conclusion that anisotropies are certainly the results of
nonlinear interactions in our flows, whether they corre-
spond to “homogeneous” fluctuations as in the Kraichnan
FIG. 3. Log-log plot for the absolute value of the projected
second order structure functions, jS

j,m
2 �jrj�j, versus the scale r,

on all measurable sectors (up to j � 6). Sectors: �0, 0�, (1);
�2, 2�, (3); �4, 0�, (�); �4, 2�, (�); �6, 0�, (�); �6, 2�, (�). The
statistical and numerical noise induced by the SO(3) projection
can be estimated as the threshold where the j � 6 sector starts to
deviate from the monotonic decreasing behavior, i.e., O�1023�.

models or to some dimensional balancing between the non-
linear terms and the forcing term is still an open ques-
tion. The presence of a hierarchical monotonic increasing
of exponents at fixing p and changing j leads to the pos-
sible breaking of the locality assumption in high enough
j sectors [21]. For locality here we mean the fact that all
integrals of pressure-velocity correlation functions are con-
vergent both in the IR and in the UV limits.

Let us conclude by assessing also the important point
connected to the existence of intermittency in higher j sec-
tors. From Table I we see that already for the j � 4 sec-
tor, and even more for j � 6, the fourth order anisotropic
scaling exponents are “almost” saturated, i.e., very close
to the values of the second order exponents. It is hard
to say how much such a result is a quantitative sign of
strong intermittency, due to the fact that we lack a clear
unambiguous dimensional —nonintermittent —prediction
for anisotropic exponents (see below). A fast saturation of
exponents within each sector as a function of the order of
the moment must somehow be expected. We imagine the
statistics in the anisotropic sectors being strongly domi-
nated by “persistent” large scale structures, introducing
cliff structures (statistically speaking) characteristic also
of saturation of exponents in anisotropic scalar advection
[22,23]. Saturation, in the anisotropic sectors as a function
of the order of the observed moment, p, may also lead
to the appearance of “persistency of anisotropies” even in
TABLE I. Best fit of the scaling exponents in all stable sectors. For comparison we also give, jS
p , the exponents for the case of a

smooth (many times differentiable) anisotropic field. Some sectors are absent due either to the small signal-to-noise ratio or to the
presence of sign changes in S

jm
p �jrj� which prevent the very definition of a slope. Errors are estimates from the fluctuation of the

logarithmic local slopes at resolution 2563.

� j, m� �0, 0� �4, 0� �4, 2� �6, 0� �6, 2�

j2 jj
S
2 0.70 6 0.03 j 2 1.67 6 0.07 j 2 1.7 6 0.1 j 2 3.4 6 0.2 j 4 3.3 6 0.2 j 4

j4 jj
S
4 1.28 6 0.05 j 4 2.15 6 0.1 j 4 2.2 6 0.1 j 4 3.2 6 0.2 j 4 3.2 6 0.2 j 4
4833
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the presence of the observed strict hierarchical ordering
[jj�p� , jj0�p� if j , j0] as remarked in [5]. In conclu-
sion we have presented the first numerical exploration of
an anisotropic homogeneous turbulent flow. We have con-
firmed that by decomposing longitudinal structure func-
tions in terms of the eigenvectors of the rotational operator
we have a dramatic improvement of the scaling behavior in
the isotropic sector. We have also used the SO(3) decom-
position in order to assess two important questions opened
in the field of anisotropic turbulence: (i) the presence of
a hierarchical organization of turbulent fluctuations as a
function of the degree of anisotropy labeled by the j index,
and (ii) the existence of intermittency (saturation as a func-
tion of the structure function order) in anisotropic sectors.
The numerically measured values for the scaling exponents
jj�p� are not consistent with a simple “smooth” hypothe-
sis for the nature of anisotropic fluctuations. More work
is needed in order to understand the universality degree of
our results as a function of the anisotropic properties of
the large scale forcing. More work will also be devoted
to measure fully tensorial quantities such as Dij�r� �
��yi�x� 2 yi�x 1 r�� �yj�x� 2 yj�x 1 r��	 in order to be
able to probe also odds sectors of the SO(3) group.

We conclude by noticing that dimensional predictions
for the jj�p� with j . 0 are far from being trivial. In-
deed, different dimensionless quantities can be built by us-
ing some anisotropic mean observable (the mean shear, for
example, or the mean squared shear in our RKF) and the
energy dissipation. Dimensional predictions then would
depend on the requirement that the anisotropic correction
is (or is not) an analytical, smooth deviation from the
isotropic sector.
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