267 research outputs found

    Beneficial effect of mildly pasteurized whey protein on intestinal integrity and innate defense in preterm and near-term piglets

    Get PDF
    Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.</p

    Long-term effects of a modified, low-protein infant formula on growth and body composition:Follow-up of a randomized, double-blind, equivalence trial

    Get PDF
    Background & aim: High protein intake in early life is associated with an increased risk of childhood obesity. Feeding a modified lower-protein (mLP) infant formula (1.7 g protein/100 kcal) until the age of 6 months is safe and supports adequate growth. The aim of the present study is to assess longer-term anthropometry with BMI at 1 and 2 years as primary outcome parameter and body composition in children fed mLP formula. Methods: Healthy term-born infants received mLP or control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double-blinded RCT. A breast-fed (BF) group served as a reference. Anthropometry data were obtained at 1 and 2 years of age. At the age of 2 years, body composition was measured with air-displacement plethysmography. Groups were compared using linear mixed model analysis. Results: At 1 and 2 years of age, anthropometry, including BMI, and body composition did not differ between the formula groups (n = 74 mLP; n = 69 CTRL). Compared to the BF group (n = 51), both formula-fed groups had higher z scores for weight for age, length for age, waist circumference for age, and mid-upper arm circumference for age at 1 year of age, but not at 2 years of age (except for z score of weight for age in the mLP group). In comparison to the BF group, only the mLP group had higher fat mass, fat-free mass, and fat mass index. However, % body fat did not differ between feeding groups. Conclusions: In this follow-up study, no significant differences in anthropometry or body composition were observed until 2 years of age between infants fed mLP and CTRL formula, despite the significantly lower protein intake in the mLP group during the intervention period. The observed differences in growth and body composition between the mLP group and the BF reference group makes it necessary to execute new trials evaluating infant formulas with improved protein quality together with further reductions in protein content. Clinical Trial Registry: This trial was registered in the Dutch Trial Register (Study ID number NTR4829, trial number NL4677). https://www.trialregister.nl/trial/4677

    An Infant Formula with Partially Hydrolyzed Whey Protein Supports Adequate Growth and Is Safe and Well-Tolerated in Healthy, Term Infants: A Randomized, Double-Blind, Equivalence Trial

    Get PDF
    The current study evaluates the safety and tolerance of a partially hydrolyzed whey protein-based infant formula (PHF) versus an in intact cow's milk protein formula (IPF). Breastfed infants were included as a reference group. In a multi-country, multicenter, randomized, double-blinded, controlled clinical trial, infants whose mothers intended to fully formula feed were randomized to PHF (n= 134) or IPF (n= 134) from <= 14 days to 17 weeks of age. The equivalence analysis of weight gain per day within margins of +/-3 g/d (primary outcome), the recorded adverse events, growth and gastro-intestinal tolerance parameters were considered for the safety evaluation. Equivalence of weight gain per day from enrolment until 17 weeks of age was demonstrated in the PHF group compared to the IPF group (difference in means -1.2 g/d; 90% CI (-2.42; 0.02)), with estimated means (SE) of 30.2 (0.5) g/d and 31.4 (0.5) g/d, respectively. No significant differences in growth outcomes, the number, severity or type of (serious) adverse events and tolerance outcomes, were observed between the two formula groups. A partially hydrolyzed whey protein-based infant formula supports adequate infant growth, with a daily weight gain equivalent to a standard intact protein-based formula; it is also safe for use and well-tolerated in healthy term infants

    Early-Life Metabolic and Hormonal Markers in Blood and Growth until Age 2 Years:Results from a Randomized Controlled Trial in Healthy Infants Fed a Modified Low-Protein Infant Formula

    Get PDF
    Background: High protein intake in early life is associated with an increased risk of childhood obesity. Dietary protein intake may be a key mechanistic modulator through alterations in endocrine and metabolic responses. Objective: We aimed to determine the impact of different protein intake of infants on blood metabolic and hormonal markers at the age of four months. We further aimed to investigate the association between these markers and anthropometric parameters and body composition until the age of two years. Design: Term infants received a modified low-protein formula (mLP) (1.7 g protein/100 kcal) or a specifically designed control formula (CTRL) (2.1 g protein/100 kcal) until 6 months of age in a double blinded RCT. The outcomes were compared with a breast-fed (BF) group. Glucose, insulin, leptin, IGF-1, IGF-BP1, -BP2, and -BP3 levels were measured at the age of 4 months. Anthropometric parameters and body composition were assessed until the age of 2 years. Groups were compared using linear regression analysis. Results: No significant differences were observed in any of the blood parameters between the formula groups (n = 53 mLP; n = 44 CTRL) despite a significant difference in protein intake. Insulin and HOMA-IR were higher in both formula groups compared to the BF group (n = 36) (p < 0.001). IGF-BP1 was lower in both formula groups compared to the BF group (p < 0.01). We found a lower IGF-BP2 level in the CTRL group compared to the BF group (p < 0.01) and a higher IGF-BP3 level in the mLP group compared to the BF group (p = 0.03). There were no significant differences in glucose, leptin, and IGF-1 between the three feeding groups. We found specific associations of all early-life metabolic and hormonal blood parameters with long-term growth and body composition except for IGF-1. Conclusions: Reducing protein intake by 20% did not result in a different metabolic profile in formula-fed infants at 4 months of age. Formula-fed infants had a lower insulin sensitivity compared to breast-fed infants. We found associations between all metabolic and hormonal markers (except for IGF-1) determined at age 4 months and growth and body composition up to two years of age

    A modified low-protein infant formula supports adequate growth in healthy, term infants:a randomized, double-blind, equivalence trial

    Get PDF
    Background: A high protein intake in early life is associated with a risk of obesity later in life. The essential amino acid requirements of formula-fed infants have been reassessed recently, enabling a reduction in total protein content and thus in protein intake. Objectives: We aimed to assess the safety of an infant formula with a modified amino acid profile and a modified low-protein (mLP) content in healthy term-born infants. Outcomes were compared with a specifically designed control (CTRL) infant formula. Methods: In this double-blind, randomized controlled equivalence trial, infants received either mLP (1.7 g protein/100 kcal; n = 90) or CTRL formula (2.1 g protein/100 kcal; n = 88) from enrollment (age ≤ 45 d) to 6 mo of age. A breastfed group served as a reference (n = 67). Anthropometry and body composition were determined at baseline, 17 wk (including safety blood parameters), and 6 mo of age. The primary outcome was daily weight gain from enrollment up until the age of 17 wk (at an equivalence margin of ±3.0 g/d). Results: Weight gain from baseline (mean ± SD age: 31 ± 9 d) up to the age of 17 wk was equivalent between the mLP and CTRL formula groups (27.9 and 28.8 g/d, respectively; difference:-0.86 g/d; 90% CI:-2.36, 0.63 g/d). No differences in other growth parameters, body composition, or in adverse events were observed. Urea was significantly lower in the mLP formula group than in the CTRL formula group (-0.74 mmol/L; 95% CI:-0.97,-0.51 mmol/L; P < 0.001). Growth rates, fat mass, fat-free mass, and several essential amino acids were significantly higher in both formula groups than in the breastfed reference group. Conclusions: Feeding an infant formula with a modified amino acid profile and a lower protein content from an average age of 1 mo until the age of 6 mo is safe and supports an adequate growth, similar to that of infants consuming CTRL formula. This trial was registered at www.trialregister.nl as Trial NL4677

    Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology

    Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli

    Get PDF
    Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge

    Context dependent learning in the serial RT task

    Get PDF
    This study investigated the development of contextual dependencies for sequential perceptual-motor learning on static features in the learning environment. In three experiments we assessed the effect of manipulating task irrelevant static context features in a serial reaction-time task. Experiment 1 demonstrated impaired performance after simultaneously changing display color, placeholder shape, and placeholder location. Experiment 2 showed that this effect was mainly caused by changing placeholder shape. Finally, Experiment 3 indicated that changing context affected both the application of sequence knowledge and the selection of individual responses. It is proposed either that incidental stimulus features are integrated with a global sequence representation, or that the changed context causes participants to strategically inhibit sequence skills
    • …
    corecore