994 research outputs found

    Higher Order 1/m1/m Corrections at Zero Recoil

    Full text link
    The general structure of the 1/m1/m corrections at zero recoil is studied. The relevant matrix elements are forward matrix elements of local higher dimensional operators and their time ordered products with higher order terms from the Lagrangian. These matrix elements may be classified in a simple way and the analysis at the non recoil point for the form factor of heavy quark currents simplifies drastically. The second order recoil corrections to the form factor hA1h_{A1} of the axial vector current, relevant for the ∣Vcb∣|V_{cb}| determination from B→D∗B \to D^* decays, are estimated to be −5%<hA1−1<0-5\% < h_{A1} - 1 < 0.Comment: LaTeX, 25 pages, one figure, appended after \end{document} as uu-encoded and compressed eps file, uses epsf, CERN-TH.7162/9

    Heavy Mesons in Two Dimensions

    Full text link
    The large mass limit of QCD uncovers symmetries that are not present in the QCD lagrangian. These symmetries have been applied to physical (finite mass) systems, such as B and D mesons. We explore the validity of this approximation in the 't Hooft model (two-dimensional QCD in the large-N approximation). We find that the large mass approximation is good, even at the charm mass, for form factors, but it breaks down for the pseudoscalar decay constant.Comment: 4 pages, 3 figures inc

    Multi-mass solvers for lattice QCD on GPUs

    Full text link
    Graphical Processing Units (GPUs) are more and more frequently used for lattice QCD calculations. Lattice studies often require computing the quark propagators for several masses. These systems can be solved using multi-shift inverters but these algorithms are memory intensive which limits the size of the problem that can be solved using GPUs. In this paper, we show how to efficiently use a memory-lean single-mass inverter to solve multi-mass problems. We focus on the BiCGstab algorithm for Wilson fermions and show that the single-mass inverter not only requires less memory but also outperforms the multi-shift variant by a factor of two.Comment: 27 pages, 6 figures, 3 Table

    Unitarity of Quantum Theory and Closed Time-Like Curves

    Get PDF
    Interacting quantum fields on spacetimes containing regions of closed timelike curves (CTCs) are subject to a non-unitary evolution XX. Recently, a prescription has been proposed, which restores unitarity of the evolution by modifying the inner product on the final Hilbert space. We give a rigorous description of this proposal and note an operational problem which arises when one considers the composition of two or more non-unitary evolutions. We propose an alternative method by which unitarity of the evolution may be regained, by extending XX to a unitary evolution on a larger (possibly indefinite) inner product space. The proposal removes the ambiguity noted by Jacobson in assigning expectation values to observables localised in regions spacelike separated from the CTC region. We comment on the physical significance of the possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D. Some changes are made to expand our discussion of Anderson's Proposal for restoring unitarit

    Four-quark Operators Relevant to B Meson Lifetimes from QCD Sum Rules

    Get PDF
    At the order of 1/m_b^3, the B meson lifetimes are controlled by the hadronic matrix elements of some four-quark operators. The nonfactorizable magnitudes of these four-quark operator matrix elements are analyzed by QCD sum rules in the framework of heavy quark effective theory. The vacuum saturation for color-singlet four-quark operators is justified at hadronic scale, and the nonfactorizable effect is at a few percent level. However for color-octet four-quark operators, the vacuum saturation is violated sizably that the nonfactorizable effect cannot be neglected for the B meson lifetimes. The implication to the extraction of some of the parameters from B decays is discussed. The B meson lifetime ratio is predicted as \tau(B^-)/\tau(B^0)=1.09\pm 0.02. However, the experimental result of the lifetime ratio \tau(\Lambda_b)/\tau(B^0) still cannot be explained.Comment: 20 pages, latex, 6 figures, discussion on non-factorizable effect of the four-quark condensate added, to appear in Phys. Rev. D57 (1998

    Operator Product Expansion for Exclusive Decays: B^+ ->Ds^+ e+e- and B^+ -> Ds^{*+} e+e-

    Full text link
    The decays B+→Ds,d+e+e−B^+\to D_{s,d}^+e^+e^- and B+→Ds,d∗+e+e−B^+\to D_{s,d}^{*+}e^+e^- proceed through a weak and an electromagnetic interaction. This is a typical ``long distance'' process, usually difficult to compute systematically. We propose that over a large fraction of phase space a combination of an operator product and heavy quark expansions effectively turns this process into one in which the weak and electromagnetic interactions occur through a local operator. Moreover, we use heavy quark spin symmetry to relate all the local operators that appear in leading order of the operator expansion to two basic ones. We use this operator expansion to estimate the decay rates for B+→Ds,d(∗)+e+e−B^+\to D_{s,d}^{(*)+}e^+e^-.Comment: 4 pages, 1 figure, Latex, published version in PR

    Heavy Quarkonium and nonperturbative corrections

    Get PDF
    We analyse the possible existence of non-perturbative contributions in heavy QˉQ\bar Q Q systems (Qˉ\bar Q and QQ need not have the same flavour) which cannot be expressed in terms of local condensates. Starting from QCD, with well defined approximations and splitting properly the fields into large and small momentum components, we derive an effective lagrangian where hard gluons (in the non-relativistic aproximation) have been integrated out. The large momentum contributions (which are dominant) are calculated using Coulomb type states. Besides the usual condensate corrections, we see the possibility of new non-perturbative contributions. We parametrize them in terms of two low momentum correlators with Coulomb bound state energy insertions EnE_n. We realize that the Heavy Quark Effective lagrangian can be used in these correlators. We calculate the corrections that they give rise to in the decay constant, the bound state energy and the matrix elements of bilinear currents at zero recoil. We study the cut-off dependence of the new contributions and we see that it matches perfectly with that of the large momentum contributions. We consider two situations in detail: i) En>>ΛQCDE_n>> \Lambda_{QCD} (MQ→∞M_Q \rightarrow \infty) and ii) En<<ΛQCDE_n << \Lambda_{QCD}, and briefly discuss the expected size of the new contributions in Υ\Upsilon , J/ΨJ/\Psi and Bc∗B_{c}^{\ast} systems.Comment: 28 pages, LaTeX. Minor changes, some comments and numerical results added. To be published in Phys. Rev.

    A Rigourous Treatment of the Lattice Renormalization Problem of F_B

    Full text link
    The BB-meson decay constant can be measured on the lattice using a 1/mb1/m_b expansion. To relate the physical quantity to Monte Carlo data one has to know the renormalization coefficient, ZZ, between the lattice operators and their continuum counterparts. We come back to this computation to resolve discrepancies found in previous calculations. We define and discuss in detail the renormalization procedure that allows the (perturbative) computation of ZZ. Comparing the one-loop calculations in the effective Lagrangian approach with the direct two-loop calculation of the two-point BB-meson correlator in the limit of large bb-quark mass, we prove that the two schemes give consistent results to order αs\alpha_s. We show that there is, however, a renormalization prescription ambiguity that can have sizeable numerical consequences. This ambiguity can be resolved in the framework of an O(a)O(a) improved calculation, and we describe the correct prescription in that case. Finally we give the numerical values of ZZ that correspond to the different types of lattice approximations discussed in the paper.Comment: 27 pages, 2 figures (Plain TeX, figures in an appended postscript file

    Testing causality violation on spacetimes with closed timelike curves

    Get PDF
    Generalized quantum mechanics is used to examine a simple two-particle scattering experiment in which there is a bounded region of closed timelike curves (CTCs) in the experiment's future. The transitional probability is shown to depend on the existence and distribution of the CTCs. The effect is therefore acausal, since the CTCs are in the experiment's causal future. The effect is due to the non-unitary evolution of the pre- and post-scattering particles as they pass through the region of CTCs. We use the time-machine spacetime developed by Politzer [1], in which CTCs are formed due to the identification of a single spatial region at one time with the same region at another time. For certain initial data, the total cross-section of a scattering experiment is shown to deviate from the standard value (the value predicted if no CTCs existed). It is shown that if the time machines are small, sparsely distributed, or far away, then the deviation in the total cross-section may be negligible as compared to the experimental error of even the most accurate measurements of cross-sections. For a spacetime with CTCs at all points, or one where microscopic time machines pervade the spacetime in the final moments before the big crunch, the total cross-section is shown to agree with the standard result (no CTCs) due to a cancellation effect.Comment: 28 pages, 8 figures, late
    • …
    corecore