12,195 research outputs found
Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation
We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was
provided by the ACT Government as part of an Australian Research
Council Linkage Grant (LP0561817; LP110100126). Drafts of the
manuscript were read by Saul Cunningham and Ben Macdonald
Superfluid Friction and Late-time Thermal Evolution of Neutron Stars
The recent temperature measurements of the two older isolated neutron stars
PSR 1929+10 and PSR 0950+08 (ages of and yr,
respectively) indicate that these objects are heated. A promising candidate
heat source is friction between the neutron star crust and the superfluid it is
thought to contain. We study the effects of superfluid friction on the
long-term thermal and rotational evolution of a neutron star. Differential
rotation velocities between the superfluid and the crust (averaged over the
inner crust moment of inertia) of rad s for PSR
1929+10 and rad s for PSR 0950+08 would account for their
observed temperatures. These differential velocities could be sustained by
pinning of superfluid vortices to the inner crust lattice with strengths of
1 MeV per nucleus. Pinned vortices can creep outward through thermal
fluctuations or quantum tunneling. For thermally-activated creep, the coupling
between the superfluid and crust is highly sensitive to temperature. If pinning
maintains large differential rotation ( rad s), a feedback
instability could occur in stars younger than yr causing
oscillations of the temperature and spin-down rate over a period of . For stars older than yr, however, vortex creep occurs
through quantum tunneling, and the creep velocity is too insensitive to
temperature for a thermal-rotational instability to occur. These older stars
could be heated through a steady process of superfluid friction.Comment: 26 pages, 1 figure, submitted to Ap
Effects of Long-Term Hypoxia on Enzymes of Carbohydrate Metabolism in the Gulf killifish, Fundulus grandis
The goal of the current study was to generate a comprehensive, multi-tissue perspective of the effects of chronic hypoxic exposure on carbohydrate metabolism in the Gulf killifish Fundulus grandis. Fish were held at approximately 1.3·mg·l–1 dissolved oxygen (~3.6·kPa) for 4·weeks, after which maximal activities were measured for all glycolytic enzymes in four tissues (white skeletal muscle, liver, heart and brain), as well as for enzymes of glycogen metabolism (in muscle and liver) and gluconeogenesis (in liver). The specific activities of enzymes of glycolysis and glycogen metabolism were strongly suppressed by hypoxia in white skeletal muscle, which may reflect decreased energy demand in this tissue during chronic hypoxia. In contrast, several enzyme specific activities were higher in liver tissue after hypoxic exposure, suggesting increased capacity for carbohydrate metabolism. Hypoxic exposure affected fewer enzymes in heart and brain than in skeletal muscle and liver, and the changes were smaller in magnitude, perhaps due to preferential perfusion of heart and brain during hypoxia. The specific activities of some gluconeogenic enzymes increased in liver during long-term hypoxic exposure, which may be coupled to increased protein catabolism in skeletal muscle. These results demonstrate that when intact fish are subjected to prolonged hypoxia, enzyme activities respond in a tissue-specific fashion reflecting the balance of energetic demands, metabolic role and oxygen supply of particular tissues. Furthermore, within glycolysis, the effects of hypoxia varied among enzymes, rather than being uniformly distributed among pathway enzymes
Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders
We address the critical and universal aspects of counterion-condensation
transition at a single charged cylinder in both two and three spatial
dimensions using numerical and analytical methods. By introducing a novel
Monte-Carlo sampling method in logarithmic radial scale, we are able to
numerically simulate the critical limit of infinite system size (corresponding
to infinite-dilution limit) within tractable equilibration times. The critical
exponents are determined for the inverse moments of the counterionic density
profile (which play the role of the order parameters and represent the inverse
localization length of counterions) both within mean-field theory and within
Monte-Carlo simulations. In three dimensions (3D), correlation effects
(neglected within mean-field theory) lead to an excessive accumulation of
counterions near the charged cylinder below the critical temperature
(condensation phase), while surprisingly, the critical region exhibits
universal critical exponents in accord with the mean-field theory. In two
dimensions (2D), we demonstrate, using both numerical and analytical
approaches, that the mean-field theory becomes exact at all temperatures
(Manning parameters), when number of counterions tends to infinity. For finite
particle number, however, the 2D problem displays a series of peculiar singular
points (with diverging heat capacity), which reflect successive de-localization
events of individual counterions from the central cylinder. In both 2D and 3D,
the heat capacity shows a universal jump at the critical point, and the energy
develops a pronounced peak. The asymptotic behavior of the energy peak location
is used to locate the critical temperature, which is also found to be universal
and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure
A Titan exploration study: Science, technology, and mission planning options, volume 2
For abstract, see Vol.
Non-uniqueness of ergodic measures with full Hausdorff dimension on a Gatzouras-Lalley carpet
In this note, we show that on certain Gatzouras-Lalley carpet, there exist
more than one ergodic measures with full Hausdorff dimension. This gives a
negative answer to a conjecture of Gatzouras and Peres
A Titan exploration study: Science, technology and mission planning options, volume 1
Mission concepts and technology advancements that can be used in the exploration of the outer planet satellites were examined. Titan, the seventh satellite of Saturn was selected as the target of interest. Science objectives for Titan exploration were identified, and recommended science payloads for four basic mission modes were developed (orbiter, atmospheric probe, surface penetrator and lander). Trial spacecraft and mission designs were produced for the various mission modes. Using these trial designs as a base, technology excursions were then made to find solutions to the problems resulting from these conventional approaches and to uncover new science, technology and mission planning options. Several mission modes were developed that take advantage of the unique conditions expected at Titan. They include a combined orbiter, atmosphere probe and lander vehicle, a combined probe and surface penetrator configuration and concepts for advanced remote sensing orbiters
Mechanical response of plectonemic DNA: an analytical solution
We consider an elastic rod model for twisted DNA in the plectonemic regime.
The molecule is treated as an impenetrable tube with an effective, adjustable
radius. The model is solved analytically and we derive formulas for the contact
pressure, twisting moment and geometrical parameters of the supercoiled region.
We apply our model to magnetic tweezer experiments of a DNA molecule subjected
to a tensile force and a torque, and extract mechanical and geometrical
quantities from the linear part of the experimental response curve. These
reconstructed values are derived in a self-contained manner, and are found to
be consistent with those available in the literature.Comment: 14 pages, 4 figure
Collapse of Stiff Polyelectrolytes due to Counterion Fluctuations
The effective elasticity of highly charged stiff polyelectrolytes is studied
in the presence of counterions, with and without added salt. The rigid polymer
conformations may become unstable due to an effective attraction induced by
counterion density fluctuations. Instabilities at the longest, or intermediate
length scales may signal collapse to globule, or necklace states, respectively.
In the presence of added-salt, a generalized electrostatic persistence length
is obtained, which has a nontrivial dependence on the Debye screening length.Comment: 4 pages RevTex, 3 ps figures included using epsf, final version as
appeared in PR
- …