6,076 research outputs found
Revivals, collapses and magnetic-pulse generation in quantum rings
Using a microscopic theory based on the density matrix formalism we
investigate quantum revivals and collapses of the charge polarization and
charge current dynamics in mesoscopic rings driven by short asymmetric
electromagnetic pulses. The collapsed state is utilized for sub-picosecond
switching of the current and associated magnetization, enabling thus the
generation of pulsed magnetic fields with a tunable time structure and shape
asymmetry which provides a new tool to study ultrafast spin-dynamics and
ratchet-based effects.Comment: 4 pages, 2 figure
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
A new algorithm for implementing the adaptive Monte Carlo method is given. It
is used to solve the relativistic Boltzmann equations that describe the time
evolution of a nonequilibrium electron-positron pair plasma containing
high-energy photons and pairs. The collision kernels for the photons as well as
pairs are constructed for Compton scattering, pair annihilation and creation,
bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic
plasma, analytical equilibrium solutions are obtained in terms of the initial
conditions. For two non-equilibrium models, the time evolution of the photon
and pair spectra is determined using the new method. The asymptotic numerical
solutions are found to be in a good agreement with the analytical equilibrium
states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical
Journa
Probing electronic excitations in molecular conduction
We identify experimental signatures in the current-voltage (I-V)
characteristics of weakly contacted molecules directly arising from excitations
in their many electron spectrum. The current is calculated using a
multielectron master equation in the Fock space of an exact diagonalized model
many-body Hamiltonian for a prototypical molecule. Using this approach, we
explain several nontrivial features in frequently observed I-Vs in terms of a
rich spectrum of excitations that may be hard to describe adequately with
standard one-electron self-consistent field (SCF) theories.Comment: Significantly different content -- inadequacy of SCF approach
described with simple model, and a whole new class of experiments showing
gate modulated current steps discussed in terms of excitations in the
molecular many-body spac
Theory of the optical absorption of light carrying orbital angular momentum by semiconductors
We develop a free-carrier theory of the optical absorption of light carrying
orbital angular momentum (twisted light) by bulk semiconductors. We obtain the
optical transition matrix elements for Bessel-mode twisted light and use them
to calculate the wave function of photo-excited electrons to first-order in the
vector potential of the laser. The associated net electric currents of first
and second-order on the field are obtained. It is shown that the magnetic field
produced at the center of the beam for the mode is of the order of a
millitesla, and could therefore be detected experimentally using, for example,
the technique of time-resolved Faraday rotation.Comment: Submitted to Phys. Rev. Lett. (23 Jan 2008
Do Evaporating Black Holes Form Photospheres?
Several authors, most notably Heckler, have claimed that the observable
Hawking emission from a microscopic black hole is significantly modified by the
formation of a photosphere around the black hole due to QED or QCD interactions
between the emitted particles. In this paper we analyze these claims and
identify a number of physical and geometrical effects which invalidate these
scenarios. We point out two key problems. First, the interacting particles must
be causally connected to interact, and this condition is satisfied by only a
small fraction of the emitted particles close to the black hole. Second, a
scattered particle requires a distance ~ E/m_e^2 for completing each
bremsstrahlung interaction, with the consequence that it is improbable for
there to be more than one complete bremsstrahlung interaction per particle near
the black hole. These two effects have not been included in previous analyses.
We conclude that the emitted particles do not interact sufficiently to form a
QED photosphere. Similar arguments apply in the QCD case and prevent a QCD
photosphere (chromosphere) from developing when the black hole temperature is
much greater than Lambda_QCD, the threshold for QCD particle emission.
Additional QCD phenomenological arguments rule out the development of a
chromosphere around black hole temperatures of order Lambda_QCD. In all cases,
the observational signatures of a cosmic or Galactic halo background of
primordial black holes or an individual black hole remain essentially those of
the standard Hawking model, with little change to the detection probability. We
also consider the possibility, as proposed by Belyanin et al. and D. Cline et
al., that plasma interactions between the emitted particles form a photosphere,
and we conclude that this scenario too is not supported.Comment: version published in Phys Rev D 78, 064043; 25 pages, 3 figures;
includes discussion on extending our analysis to TeV-scale,
higher-dimensional black hole
Coherent control of correlated nanodevices: A hybrid time-dependent numerical renormalization-group approach to periodic switching
The time-dependent numerical renormalization-group approach (TD-NRG),
originally devised for tracking the real-time dynamics of quantum-impurity
systems following a single quantum quench, is extended to multiple switching
events. This generalization of the TD-NRG encompasses the possibility of
periodic switching, allowing for coherent control of strongly correlated
systems by an external time-dependent field. To this end, we have embedded the
TD-NRG in a hybrid framework that combines the outstanding capabilities of the
numerical renormalization group to systematically construct the effective
low-energy Hamiltonian of the system with the prowess of complementary
approaches for calculating the real-time dynamics derived from this
Hamiltonian. We demonstrate the power of our approach by hybridizing the TD-NRG
with the Chebyshev expansion technique in order to investigate periodic
switching in the interacting resonant-level model. Although the interacting
model shares the same low-energy fixed point as its noninteracting counterpart,
we surprisingly find the gradual emergence of damped oscillations as the
interaction strength is increased. Focusing on a single quantum quench and
using a strong-coupling analysis, we reveal the origin of these
interaction-induced oscillations and provide an analytical estimate for their
frequency. The latter agrees well with the numerical results.Comment: 20 pager, Revtex, 10 figures, submitted to Physical Review
Noise of Kondo dot with ac gate: Floquet-Green's function and Noncrossing Approximation Approach
The transport properties of an ac-driving quantum dot in the Kondo regime are
studied by the Floquet-Green's function method with slave-boson infinite-
noncrossing approximation. Our results show that the Kondo peak of the local
density of states is robust against weak ac gate modulation. Significant
suppression of the Kondo peak can be observed when the ac gate field becomes
strong. The photon-assisted noise of Kondo resonance as a function of dc
voltage does not show singularities which are expected for noninteracting
resonant quantum dot. These findings suggest that one may make use of the
photon-assisted noise measurement to tell apart whether the resonant transport
is via noninteracting resonance or strongly-correlated Kondo resonance
Pseudogap in the chain states of YBCO
As established by scanning tunneling microscopy (STM) cleaved surfaces of the
high temperature superconductor YBaCuO develop charge
density wave (CDW) modulations in the one-dimensional (1D) CuO chains. At the
same time, no signatures of the CDW have been reported in the spectral function
of the chain band previously studied by photoemission. We use soft X-ray angle
resolved photoemission (SX-ARPES) to detect a chain-derived surface band that
had not been detected in previous work. The for the new surface
band is found to be 0.55\,\AA, which matches the wave vector of the CDW
observed in direct space by STM. This reveals the relevance of the Fermi
surface nesting for the formation of CDWs in the CuO chains in
YBaCuO. In agreement with the short range nature of the
CDW order the newly detected surface band exhibits a pseudogap, whose energy
scale also corresponds to that observed by STM
Bremsstrahlung and pair production processes at low energies, multi-differential cross section and polarization phenomena
Radiative electron-proton scattering is studied in peripheral kinematics,
where the scattered electron and photon move close to the direction of the
initial electron. Even in the case of unpolarized initial electron the photon
may have a definite polarization. The differential cross sections with
longitudinally or transversal polarized initial electron are calculated. The
same phenomena are considered for the production of an electron-positron pair
by the photon, where the final positron (electron) can be also polarized.
Differential distributions for the case of polarized initial photon are given.
Both cases of unscreened and completely screened atomic targets are considered.Comment: 15 pages, 6 figure
Separately contacted edge states: A new spectroscopic tool for the investigation of the quantum Hall effect
Using an innovative combination of a quasi-Corbino sample geometry and the
cross-gate technique, we have developed a method that enables us to separately
contact single edge channels in the quantum Hall regime and investigate
equilibration among them. Performing 4-point resistance measurements, we
directly obtain information on the energetic and geometric structure of the
edge region and the equilibration-length for current transport across the
Landau- as well as the spin-gap. Based on an almost free choice in the number
of participating edge channels and their interaction-length a systematic
investigation of the parameter-space becomes possible.Comment: 8 pages, 7 figure
- …