3,100 research outputs found
Chaotic wave functions and exponential convergence of low-lying energy eigenvalues
We suggest that low-lying eigenvalues of realistic quantum many-body
hamiltonians, given, as in the nuclear shell model, by large matrices, can be
calculated, instead of the full diagonalization, by the diagonalization of
small truncated matrices with the exponential extrapolation of the results. We
show numerical data confirming this conjecture. We argue that the exponential
convergence in an appropriate basis may be a generic feature of complicated
("chaotic") systems where the wave functions are localized in this basis.Comment: 4 figure
Local spin resonance and spin-Peierls-like phase transition in a geometrically frustrated antiferromagnet
Using inelastic magnetic neutron scattering we have discovered a localized
spin resonance at 4.5 meV in the ordered phase of the geometrically frustrated
cubic antiferromagnet . The resonance develops abruptly from
quantum critical fluctuations upon cooling through a first order transition to
a co-planar antiferromagnet at K. We argue that this transition
is a three dimensional analogue of the spin-Peierls transition.Comment: 4 figures, revised and accepted in Phys. Rev. Let
SuperB: a linear high-luminosity B Factory
This paper is based on the outcome of the activity that has taken place
during the recent workshop on "SuperB in Italy" held in Frascati on November
11-12, 2005. The workshop was opened by a theoretical introduction of Marco
Ciuchini and was structured in two working groups. One focused on the machine
and the other on the detector and experimental issues.
The present status on CP is mainly based on the results achieved by BaBar and
Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of
the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e-
asymmetric B Factories operating at the center of mass energy corresponding to
the mass of the Y(4s). With the two B Factories taking data, the Unitarity
Triangle is now beginning to be overconstrained by improving the measurements
of the sides and now also of the angles alpha, and gamma. We are also in
presence of the very intriguing results about the measurements of sin(2 beta)
in the time dependent analysis of decay channels via penguin loops, where b -->
s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as
charm and ISR physics are important parts of the scientific program of a SuperB
Factory. The physics case together with possible scenarios for the high
luminosity SuperB Factory based on the concepts of the Linear Collider and the
related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor
Creation of ultracold molecules from a Fermi gas of atoms
Since the realization of Bose-Einstein condensates (BEC) in atomic gases an
experimental challenge has been the production of molecular gases in the
quantum regime. A promising approach is to create the molecular gas directly
from an ultracold atomic gas; for example, atoms in a BEC have been coupled to
electronic ground-state molecules through photoassociation as well as through a
magnetic-field Feshbach resonance. The availability of atomic Fermi gases
provides the exciting prospect of coupling fermionic atoms to bosonic
molecules, and thus altering the quantum statistics of the system. This
Fermi-Bose coupling is closely related to the pairing mechanism for a novel
fermionic superfluid proposed to occur near a Feshbach resonance. Here we
report the creation and quantitative characterization of exotic, ultracold
K molecules. Starting with a quantum degenerate Fermi gas of atoms
at T < 150 nanoKelvin we scan over a Feshbach resonance to adiabatically create
over a quarter million trapped molecules, which we can convert back to atoms by
reversing the scan. The small binding energy of the molecules is controlled by
detuning from the Feshbach resonance and can be varied over a wide range. We
directly detect these weakly bound molecules through rf photodissociation
spectra that probe the molecular wavefunction and yield binding energies that
are consistent with theory
Magnetic properties of the frustrated AFM spinel ZnCr_2O_4 and the spin-glass Zn_{1-x}Cd_xCr_2O_4 (x=0.05,0.10)
The -dependence (2- 400 K) of the electron paramagnetic resonance (EPR),
magnetic susceptibility, , and specific heat, , of the
antiferromagnetic (AFM) spinel ZnCrO and the spin-glass
(SG) ZnCdCrO () is reported. These
systems behave as a strongly frustrated AFM and SG with K and -400 K K. At high-
the EPR intensity follows the and the -value is -independent.
The linewidth broadens as the temperature is lowered, suggesting the existence
of short range AFM correlations in the paramagnetic phase. For
ZnCrO the EPR intensity and decreases below 90 K and 50
K, respectively. These results are discussed in terms of nearest-neighbor
Cr (S %) spin-coupled pairs with an exchange coupling of 50 K. The appearance of small resonance modes for K,
the observation of a sharp drop in and a strong peak in
at K confirms, as previously reported, the existence of long range
AFM correlations in the low- phase. A comparison with recent neutron
diffraction experiments that found a near dispersionless excitation at 4.5 meV
for and a continuous gapless spectrum for ,
is also given.Comment: 17 pages, 8 figures, 1 Table. Submitted to Physical Review
Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
- …