5,108 research outputs found
EuroSpine Task Force on Research: support for spine researchers
In recognition of the value of research to the practice of spine care, Federico Balagué and Ferran Pellisé, at the time President and Secretary for EuroSpine, asked Margareta Nordin to set up a Task Force on Research (TFR) for EuroSpine during summer 2011. The concept was to stimulate and facilitate a research community within the society, through two main functions: (1) distribution of EuroSpine funds to researchers; (2) develop and deliver research training/education courses. What has the EuroSpine TFR accomplished since its inception
A Parameter Study of Classical Be Star Disk Models Constrained by Optical Interferometry
We have computed theoretical models of circumstellar disks for the classical
Be stars Dra, Psc, and Cyg. Models were constructed
using a non-LTE radiative transfer code developed by \citet{sig07} which
incorporates a number of improvements over previous treatments of the disk
thermal structure, including a realistic chemical composition. Our models are
constrained by direct comparison with long baseline optical interferometric
observations of the H emitting regions and by contemporaneous H
line profiles. Detailed comparisons of our predictions with H
interferometry and spectroscopy place very tight constraints on the density
distributions for these circumstellar disks.Comment: 10 figures,28 pages, accepted by Ap
Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1
We consider a bi-layer electronic system at a total Landau level filling
factor nu =1, and focus on the transition from the regime of weak inter-layer
coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall
ferromagnet''). Making the assumption that in the transition region the system
is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly
coupled state, we show that the transition is accompanied by a strong increase
in longitudinal Coulomb drag, that reaches a maximum of approximately
. In that regime the longitudinal drag is increased with decreasing
temperature.Comment: four pages, one included figur
Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures
Various features of spin-polarized Fermi gases confined in harmonic traps are
discussed, taking into account possible perspectives of experimental
measurements. The mechanism of the expansion of the gas is explicitly
investigated and compared with the one of an interacting Bose gas. The role of
interactions on the equilibrium and non equilibrium behaviour of the fermionic
component in Fermi-Bose mixtures is discussed. Special emphasis is given to the
case of potassium isotopes mixtures.Comment: 5 pages, 3 figures, revtex, to be published in J. Phys.
The Thermal Structure of the Circumstellar Disk Surrounding the Classical Be Star gamma Cassiopeia
We have computed radiative equilibrium models for the gas in the
circumstellar envelope surrounding the hot, classical Be star Cassiopeia. This calculation is performed using a code that incorporates a
number of improvements over previous treatments of the disk's thermal structure
by \citet{mil98} and \citet{jon04}; most importantly, heating and cooling rates
are computed with atomic models for H, He, CNO, Mg, Si, Ca, & Fe and their
relevant ions. Thus, for the first time, the thermal structure of a Be disk is
computed for a gas with a solar chemical composition as opposed to assuming a
pure hydrogen envelope. We compare the predicted average disk temperature, the
total energy loss in H, and the near-IR excess with observations and
find that all can be accounted for by a disk that is in vertical hydrostatic
equilibrium with a density in the equatorial plane of to
. We also discuss the changes in
the disk's thermal structure that result from the additional heating and
cooling processes available to a gas with a solar chemical composition over
those available to a pure hydrogen plasma.Comment: 11 pages, 8 figures high resolution figures available at
http://inverse.astro.uwo.ca/sig_jon07.htm
Evaporative cooling of trapped fermionic atoms
We propose an efficient mechanism for the evaporative cooling of trapped
fermions directly into quantum degeneracy. Our idea is based on an electric
field induced elastic interaction between trapped atoms in spin symmetric
states. We discuss some novel general features of fermionic evaporative cooling
and present numerical studies demonstrating the feasibility for the cooling of
alkali metal fermionic species Li, K, and Rb. We also
discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including
the effects of anisotropic interactions.Comment: to be publishe
The three-dimensional Anderson model of localization with binary random potential
We study the three-dimensional two-band Anderson model of localization and
compare our results to experimental results for amorphous metallic alloys
(AMA). Using the transfer-matrix method, we identify and characterize the
metal-insulator transitions as functions of Fermi level position, band
broadening due to disorder and concentration of alloy composition. The
appropriate phase diagrams of regions of extended and localized electronic
states are studied and qualitative agreement with AMA such as Ti-Ni and Ti-Cu
metallic glasses is found. We estimate the critical exponents nu_W, nu_E and
nu_x when either disorder W, energy E or concentration x is varied,
respectively. All our results are compatible with the universal value nu ~ 1.6
obtained in the single-band Anderson model.Comment: 9 RevTeX4 pages with 11 .eps figures included, submitted to PR
The Low Velocity Wind from the Circumstellar Matter Around the B9V Star sigma Herculis
We have obtained FUSE spectra of sigma Her, a nearby binary system, with a
main sequence primary, that has a Vega-like infrared excess. We observe
absorption in the excited fine structure lines C II* at 1037 A, N II* at 1085
A, and N II** at 1086 A that are blueshifted by as much as ~30 km/sec with
respect to the star. Since these features are considerably narrower than the
stellar lines and broader than interstellar features, the C II and N II are
circumstellar. We suggest that there is a radiatively driven wind, arising from
the circumstellar matter, rather than accretion as occurs around beta Pic,
because of sigma Her's high luminosity. Assuming that the gas is liberated by
collisions between parent bodies at 20 AU, the approximate distance at which
blackbody grains are in radiative equilibrium with the star and at which 3-body
orbits become unstable, we infer dM/dt ~ 6 * 10^-12 M_{sun}/yr. This wind
depletes the minimum mass of parent bodies in less than the estimated age of
the system.Comment: 6 pages, 3 figures, ApJ in pres
Wigner Crystallization of a two dimensional electron gas in a magnetic field: single electrons versus electron pairs at the lattice sites
The ground state energy and the lowest excitations of a two dimensional
Wigner crystal in a perpendicular magnetic field with one and two electrons per
cell is investigated. In case of two electrons per lattice site, the
interaction of the electrons {\em within} each cell is taken into account
exactly (including exchange and correlation effects), and the interaction {\em
between} the cells is in second order (dipole) van der Waals approximation. No
further approximations are made, in particular Landau level mixing and {\em
in}complete spin polarization are accounted for. Therefore, our calculation
comprises a, roughly speaking, complementary description of the bubble phase
(in the special case of one and two electrons per bubble), which was proposed
by Koulakov, Fogler and Shklovskii on the basis of a Hartree Fock calculation.
The phase diagram shows that in GaAs the paired phase is energetically more
favorable than the single electron phase for, roughly speaking, filling factor
larger than 0.3 and density parameter smaller than 19 effective Bohr
radii (for a more precise statement see Fig.s 4 and 5). If we start within the
paired phase and increase magnetic field or decrease density, the pairs first
undergo some singlet- triplet transitions before they break.Comment: 11 pages, 7 figure
- …