3,475 research outputs found
Ionized and neutral gas in the peculiar star/cluster complex in NGC 6946
The characteristics of ionized and HI gas in the peculiar star/cluster
complex in NGC 6946, obtained with the 6-m telescope (BTA) SAO RAS, the Gemini
North telescope, and the Westerbork Synthesis Radio Telescope (WSRT), are
presented. The complex is unusual as hosting a super star cluster, the most
massive known in an apparently non-interacting giant galaxy. It contains a
number of smaller clusters and is bordered by a sharp C-shaped rim. We found
that the complex is additionally unusual in having peculiar gas kinematics. The
velocity field of the ionized gas reveals a deep oval minimum, ~300 pc in size,
centered 7" east of the supercluster. The Vr of the ionized gas in the dip
center is 100 km/s lower than in its surroundings, and emission lines within
the dip appear to be shock excited. This dip is near the center of an HI hole
and a semi-ring of HII regions. The HI (and less certainly, HII) velocity
fields reveal expansion, with the velocity reaching ~30 km/s at a distance
about 300 pc from the center of expansion, which is near the deep minimum
position. The super star cluster is at the western rim of the minimum. The
sharp western rim of the whole complex is plausibly a manifestation of a
regular dust arc along the complex edge. Different hypotheses about the complex
and the Vr depression origins are discussed, including a HVC/dark mini-halo
impact, a BCD galaxy merging, and a gas outflow due to release of energy from
the supercluster stars.Comment: MN RAS, accepte
Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory
The Pierre Auger Observatory (PAO) has measured the spectrum and composition
of the ultrahigh energy cosmic rays with unprecedented precision. We use these
measurements to constrain their spectrum and composition as injected from their
sources and, in turn, use these results to estimate the spectrum of cosmogenic
neutrinos generated in their propagation through intergalactic space. We find
that the PAO measurements can be well fit if the injected cosmic rays consist
entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si)
range. A mixture of protons and heavier species is also acceptable but (on the
basis of existing hadronic interaction models) injection of pure light nuclei
(p, He) results in unacceptable fits to the new elongation rate data. The
expected spectrum of cosmogenic neutrinos can vary considerably, depending on
the precise spectrum and chemical composition injected from the cosmic ray
sources. In the models where heavy nuclei dominate the cosmic ray spectrum and
few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can
be suppressed by up to two orders of magnitude relative to the all-proton
prediction, making its detection beyond the reach of current and planned
neutrino telescopes. Other models consistent with the data, however, are
proton-dominated with only a small (1-10%) admixture of heavy nuclei and
predict an associated cosmogenic flux within the reach of upcoming experiments.
Thus a detection or non-detection of cosmogenic neutrinos can assist in
discriminating between these possibilities.Comment: 10 pages, 7 figure
Studies of multiplicity in relativistic heavy-ion collisions
In this talk I'll review the present status of charged particle multiplicity
measurements from heavy-ion collisions. The characteristic features of
multiplicity distributions obtained in Au+Au collisions will be discussed in
terms of collision centrality and energy and compared to those of p+p
collisions. Multiplicity measurements of d+Au collisions at 200 GeV
nucleon-nucleon center-of-mass energy will also be discussed. The results will
be compared to various theoretical models and simple scaling properties of the
data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle
Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19,
2003, 16 pages, 15 figure
Observation-based modelling of the energetic storm particle event of 14 July 2012
Aims. We model the energetic storm particle (ESP) event of 14 July 2012 using the energetic particle acceleration and transport model named 'PArticle Radiation Asset Directed at Interplanetary Space Exploration' (PARADISE), together with the solar wind and coronal mass ejection (CME) model named 'EUropean Heliospheric FORcasting Information Asset' (EUHFORIA). The simulation results illustrate both the capabilities and limitations of the utilised models. We show that the models capture some essential structural features of the ESP event; however, for some aspects the simulations and observations diverge. We describe and, to some extent, assess the sources of errors in the modelling chain of EUHFORIA and PARADISE and discuss how they may be mitigated in the future. Methods. The PARADISE model computes energetic particle distributions in the heliosphere by solving the focused transport equation in a stochastic manner. This is done using a background solar wind configuration generated by the ideal magnetohydrodynamic module of EUHFORIA. The CME generating the ESP event is simulated by using the spheromak model of EUHFORIA, which approximates the CME's flux rope as a linear force-free spheroidal magnetic field. In addition, a tool was developed to trace CME-driven shock waves in the EUHFORIA simulation domain. This tool is used in PARADISE to (i) inject 50 keV protons continuously at the CME-driven shock and (ii) include a foreshock and a sheath region, in which the energetic particle parallel mean free path, lambda(parallel to), decreases towards the shock wave. The value of lambda(parallel to) at the shock wave is estimated from in situ observations of the ESP event. Results. For energies below similar to 1 MeV, the simulation results agree well with both the upstream and downstream components of the ESP event observed by the Advanced Composition Explorer. This suggests that these low-energy protons are mainly the result of interplanetary particle acceleration. In the downstream region, the sharp drop in the energetic particle intensities is reproduced at the entry into the following magnetic cloud, illustrating the importance of a magnetised CME model.Peer reviewe
The Extremely High Energy Cosmic Rays
Experimental results from Haverah Park, Yakutsk, AGASA and Fly's Eye are
reviewed. All these experiments work in the energy range above 0.1 EeV. The
'dip' structure around 3 EeV in the energy spectrum is well established by all
the experiments, though the exact position differs slightly. Fly's Eye and
Yakutsk results on the chemical composition indicate that the cosmic rays are
getting lighter over the energy range from 0.1 EeV to 10 EeV, but the exact
fraction is hadronic interaction model dependent, as indicated by the AGASA
analysis. The arrival directions of cosmic rays are largely isotropic, but
interesting features may be starting to emerge. Most of the experimental
results can best be explained with the scenario that an extragalactic component
gradually takes over a galactic population as energy increases and cosmic rays
at the highest energies are dominated by particles coming from extragalactic
space. However, identification of the extragalactic sources has not yet been
successful because of limited statistics and the resolution of the data.Comment: The review paper including 21 figures. 39 pages: To be published in
Journal of Physics
Spectroscopy of Stellar-Like Objects Contained in the Second Byurakan Survey. I
The results of spectroscopic observations of 363 star-like objects from the
Second Byurakan Survey (SBS) are reported. This SBS's subsample has proven to
be a rich source of newly identified quasars, Seyfert type galaxies, degenerate
stars and hot subdwarfs. In the subsample here studied, we identified 35 new
QSOs, 142 White Dwarfs (WDs) the majority of which, 114 are of DA type, 55
subdwarfs (29 of which are sdB-type stars), 10 HBB, 16 NHB, 54 G-type and 25
F-type stars, two objects with composite spectra, four Cataclismic Variables
(CV), two peculiar emission line stars, 17 objects with continuous spectra, as
well as one planetary nebula. Among the 35 QSOs we have found two Broad
Absorption Line (BAL) QSOs, namely SBS 1423+500 and SBS 1435+500A. Magnitudes,
redshifts, and slit spectra for all QSOs, also some typical spectra of the
peculiar stars are presented. We estimate the minimum surface density of bright
QSOs in redshift range 0.3<z<2.2 to be 0.05 per sq. deg. for B<17.0 and 0.10
per sq. deg. for B<17.5.Comment: 22 pages, 3 tables, 4 figures, PASP in pres
Particle production azimuthal asymmetries in a clustering of color sources model
The collective interactions of many partons in the first stage of the
collisions is the usual accepted explanation of the sizable elliptical flow.
The clustering of color sources provides a framework of partonic interactions.
In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c
in both the dependence of v2 transverse momentum and in the shape of the
nuclear modified factor on the azimuthal angle for different centralities. We
show the predictions at LHC energies for Pb-Pb. In the case of proton-proton
collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics
Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies
This paper is devoted to the analysis of new observational data for the group
of galaxies NGC 7465/64/63, which were obtained at the 6-m telescope of the
Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS)
with the multimode instrument SCORPIO and the Multi Pupil Fiber Spectrograph.
For one of group members (NGC 7465) the presence of a polar ring was suspected.
Large-scale brightness distributions, velocity and velocity dispersion fields
of the ionized gas for all three galaxies as well as line-of-sight velocity
curves on the basis of emission and absorption lines and a stellar velocity
field in the central region for NGC 7465 were constructed. As a result of the
analysis of the obtained information, we revealed an inner stellar disk (r ~
0.5 kpc) and a warped gaseous disk in addition to the main stellar disk, in NGC
7465. On the basis of the joint study of photometric and spectral data it was
ascertained that NGC 7464 is the irregular galaxy of the IrrI type, whose
structural and kinematic peculiarities resulted most likely from the
gravitational interaction with NGC 7465. The velocity field of the ionized gas
of NGC 7463 turned out typical for spiral galaxies with a bar, and the bending
of outer parts of its disk could arise owing to the close encounter with one of
galaxies of the environment.Comment: 20 pages, 6 figure
- …