3,475 research outputs found

    Ionized and neutral gas in the peculiar star/cluster complex in NGC 6946

    Get PDF
    The characteristics of ionized and HI gas in the peculiar star/cluster complex in NGC 6946, obtained with the 6-m telescope (BTA) SAO RAS, the Gemini North telescope, and the Westerbork Synthesis Radio Telescope (WSRT), are presented. The complex is unusual as hosting a super star cluster, the most massive known in an apparently non-interacting giant galaxy. It contains a number of smaller clusters and is bordered by a sharp C-shaped rim. We found that the complex is additionally unusual in having peculiar gas kinematics. The velocity field of the ionized gas reveals a deep oval minimum, ~300 pc in size, centered 7" east of the supercluster. The Vr of the ionized gas in the dip center is 100 km/s lower than in its surroundings, and emission lines within the dip appear to be shock excited. This dip is near the center of an HI hole and a semi-ring of HII regions. The HI (and less certainly, HII) velocity fields reveal expansion, with the velocity reaching ~30 km/s at a distance about 300 pc from the center of expansion, which is near the deep minimum position. The super star cluster is at the western rim of the minimum. The sharp western rim of the whole complex is plausibly a manifestation of a regular dust arc along the complex edge. Different hypotheses about the complex and the Vr depression origins are discussed, including a HVC/dark mini-halo impact, a BCD galaxy merging, and a gas outflow due to release of energy from the supercluster stars.Comment: MN RAS, accepte

    Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory (PAO) has measured the spectrum and composition of the ultrahigh energy cosmic rays with unprecedented precision. We use these measurements to constrain their spectrum and composition as injected from their sources and, in turn, use these results to estimate the spectrum of cosmogenic neutrinos generated in their propagation through intergalactic space. We find that the PAO measurements can be well fit if the injected cosmic rays consist entirely of nuclei with masses in the intermediate (C, N, O) to heavy (Fe, Si) range. A mixture of protons and heavier species is also acceptable but (on the basis of existing hadronic interaction models) injection of pure light nuclei (p, He) results in unacceptable fits to the new elongation rate data. The expected spectrum of cosmogenic neutrinos can vary considerably, depending on the precise spectrum and chemical composition injected from the cosmic ray sources. In the models where heavy nuclei dominate the cosmic ray spectrum and few dissociated protons exceed GZK energies, the cosmogenic neutrino flux can be suppressed by up to two orders of magnitude relative to the all-proton prediction, making its detection beyond the reach of current and planned neutrino telescopes. Other models consistent with the data, however, are proton-dominated with only a small (1-10%) admixture of heavy nuclei and predict an associated cosmogenic flux within the reach of upcoming experiments. Thus a detection or non-detection of cosmogenic neutrinos can assist in discriminating between these possibilities.Comment: 10 pages, 7 figure

    Studies of multiplicity in relativistic heavy-ion collisions

    Full text link
    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19, 2003, 16 pages, 15 figure

    Observation-based modelling of the energetic storm particle event of 14 July 2012

    Get PDF
    Aims. We model the energetic storm particle (ESP) event of 14 July 2012 using the energetic particle acceleration and transport model named 'PArticle Radiation Asset Directed at Interplanetary Space Exploration' (PARADISE), together with the solar wind and coronal mass ejection (CME) model named 'EUropean Heliospheric FORcasting Information Asset' (EUHFORIA). The simulation results illustrate both the capabilities and limitations of the utilised models. We show that the models capture some essential structural features of the ESP event; however, for some aspects the simulations and observations diverge. We describe and, to some extent, assess the sources of errors in the modelling chain of EUHFORIA and PARADISE and discuss how they may be mitigated in the future. Methods. The PARADISE model computes energetic particle distributions in the heliosphere by solving the focused transport equation in a stochastic manner. This is done using a background solar wind configuration generated by the ideal magnetohydrodynamic module of EUHFORIA. The CME generating the ESP event is simulated by using the spheromak model of EUHFORIA, which approximates the CME's flux rope as a linear force-free spheroidal magnetic field. In addition, a tool was developed to trace CME-driven shock waves in the EUHFORIA simulation domain. This tool is used in PARADISE to (i) inject 50 keV protons continuously at the CME-driven shock and (ii) include a foreshock and a sheath region, in which the energetic particle parallel mean free path, lambda(parallel to), decreases towards the shock wave. The value of lambda(parallel to) at the shock wave is estimated from in situ observations of the ESP event. Results. For energies below similar to 1 MeV, the simulation results agree well with both the upstream and downstream components of the ESP event observed by the Advanced Composition Explorer. This suggests that these low-energy protons are mainly the result of interplanetary particle acceleration. In the downstream region, the sharp drop in the energetic particle intensities is reproduced at the entry into the following magnetic cloud, illustrating the importance of a magnetised CME model.Peer reviewe

    The Extremely High Energy Cosmic Rays

    Get PDF
    Experimental results from Haverah Park, Yakutsk, AGASA and Fly's Eye are reviewed. All these experiments work in the energy range above 0.1 EeV. The 'dip' structure around 3 EeV in the energy spectrum is well established by all the experiments, though the exact position differs slightly. Fly's Eye and Yakutsk results on the chemical composition indicate that the cosmic rays are getting lighter over the energy range from 0.1 EeV to 10 EeV, but the exact fraction is hadronic interaction model dependent, as indicated by the AGASA analysis. The arrival directions of cosmic rays are largely isotropic, but interesting features may be starting to emerge. Most of the experimental results can best be explained with the scenario that an extragalactic component gradually takes over a galactic population as energy increases and cosmic rays at the highest energies are dominated by particles coming from extragalactic space. However, identification of the extragalactic sources has not yet been successful because of limited statistics and the resolution of the data.Comment: The review paper including 21 figures. 39 pages: To be published in Journal of Physics

    Spectroscopy of Stellar-Like Objects Contained in the Second Byurakan Survey. I

    Get PDF
    The results of spectroscopic observations of 363 star-like objects from the Second Byurakan Survey (SBS) are reported. This SBS's subsample has proven to be a rich source of newly identified quasars, Seyfert type galaxies, degenerate stars and hot subdwarfs. In the subsample here studied, we identified 35 new QSOs, 142 White Dwarfs (WDs) the majority of which, 114 are of DA type, 55 subdwarfs (29 of which are sdB-type stars), 10 HBB, 16 NHB, 54 G-type and 25 F-type stars, two objects with composite spectra, four Cataclismic Variables (CV), two peculiar emission line stars, 17 objects with continuous spectra, as well as one planetary nebula. Among the 35 QSOs we have found two Broad Absorption Line (BAL) QSOs, namely SBS 1423+500 and SBS 1435+500A. Magnitudes, redshifts, and slit spectra for all QSOs, also some typical spectra of the peculiar stars are presented. We estimate the minimum surface density of bright QSOs in redshift range 0.3<z<2.2 to be 0.05 per sq. deg. for B<17.0 and 0.10 per sq. deg. for B<17.5.Comment: 22 pages, 3 tables, 4 figures, PASP in pres

    Particle production azimuthal asymmetries in a clustering of color sources model

    Full text link
    The collective interactions of many partons in the first stage of the collisions is the usual accepted explanation of the sizable elliptical flow. The clustering of color sources provides a framework of partonic interactions. In this scheme, we show a reasonable agreement with RHIC data for pT<1.5 GeV/c in both the dependence of v2 transverse momentum and in the shape of the nuclear modified factor on the azimuthal angle for different centralities. We show the predictions at LHC energies for Pb-Pb. In the case of proton-proton collisions a sizable v2 is obtained at this energy.Comment: To appear in Journal of Physics

    Study of the structure and kinematics of the NGC 7465/64/63 triplet galaxies

    Full text link
    This paper is devoted to the analysis of new observational data for the group of galaxies NGC 7465/64/63, which were obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) with the multimode instrument SCORPIO and the Multi Pupil Fiber Spectrograph. For one of group members (NGC 7465) the presence of a polar ring was suspected. Large-scale brightness distributions, velocity and velocity dispersion fields of the ionized gas for all three galaxies as well as line-of-sight velocity curves on the basis of emission and absorption lines and a stellar velocity field in the central region for NGC 7465 were constructed. As a result of the analysis of the obtained information, we revealed an inner stellar disk (r ~ 0.5 kpc) and a warped gaseous disk in addition to the main stellar disk, in NGC 7465. On the basis of the joint study of photometric and spectral data it was ascertained that NGC 7464 is the irregular galaxy of the IrrI type, whose structural and kinematic peculiarities resulted most likely from the gravitational interaction with NGC 7465. The velocity field of the ionized gas of NGC 7463 turned out typical for spiral galaxies with a bar, and the bending of outer parts of its disk could arise owing to the close encounter with one of galaxies of the environment.Comment: 20 pages, 6 figure
    • …
    corecore