91,317 research outputs found

    Geometric criticality between plaquette phases in integer-spin kagome XXZ antiferromagnets

    Full text link
    The phase diagram of the uniaxially anisotropic s=1s=1 antiferromagnet on the kagom\'e lattice includes a critical line exactly described by the classical three-color model. This line is distinct from the standard geometric classical criticality that appears in the classical limit (s→∞s \to \infty) of the 2D XY model; the s=1s=1 geometric T=0 critical line separates two unconventional plaquette-ordered phases that survive to nonzero temperature. The experimentally important correlations at finite temperature and the nature of the transitions into these ordered phases are obtained using the mapping to the three-color model and a combination of perturbation theory and a variational ansatz for the ordered phases. The ordered phases show sixfold symmetry breaking and are similar to phases proposed for the honeycomb lattice dimer model and s=1/2s=1/2 XXZXXZ model. The same mapping and phase transition can be realized also for integer spins s≥2s \geq 2 but then require strong on-site anisotropy in the Hamiltonian.Comment: 5 pages, 2 figure

    A New Multiplicity Formula for the Weyl Modules of Type A

    Full text link
    A monomial basis and a filtration of subalgebras for the universal enveloping algebra U(gl)U(g_l) of a complex simple Lie algebra glg_l of type AlA_l is given in this note. In particular, a new multiplicity formula for the Weyl module V(λ)V(\lambda) of U(gl)U(g_l) is obtained in this note.Comment: 13 page

    Annealing-induced Fe oxide nanostructures on GaAs

    Get PDF
    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy. These nanostripes; exhibited uniaxial magnetic anisotropy. The formation of these nanostructures is attributed to surface anisotropy, which in addition could explain the observed uniaxial magnetic anisotropy

    Ground states of one and two fractional vortices in long Josephson 0-kappa-junctions

    Full text link
    Half integer Josephson vortices in 0-π\pi-junctions, discussed theoretically and observed experimentally, spontaneously appear at the point where the Josephson phase is π\pi-discontinuous. The creation of \emph{arbitrary} discontinuities of the Josephson phase has been demonstrated recently. Here we study fractional vortices formed at an arbitrary κ\kappa-discontinuity, discuss their stability and possible ground states. The two stable states are not mirror symmetric. Furthermore, the possible ground states formed at two κ\kappa-discontinuities separated by a distance aa are investigated, and the energy and the regions of stability of each ground state are calculated. We also show that the ground states may strongly depend on the distance aa between the discontinuities. There is a crossover distance aca_c such that for aacaa_c the ground states may be qualitatively different.Comment: 7 figures, submitted to PRB In v.2 one figure is added, and refs are updated In v.3 major revision, many issues fixe

    Will mobile video become the killer application for 3G? - an empirical model for media convergence

    Get PDF
    Mobile carriers have continually rolled out 3G mobile video applications to increase their revenue and profits. The presumption is that video is superior to the already successful SMS, ringtones, and pictures, and can create greater value to users. However, recent market surveys revealed contradicting results. Motivated by this discrepancy, we propose in this paper a parsimonious model for user acceptance of mobile entertainment as digital convergence. Integrating research on Information Systems, Flow, and Media Psychology, we take a unique approach to user acceptance of digital convergence - platform migration. Our key proposition is that the interaction between media types and the platform-specific constraints is the key determinant of user evaluation. Particularly, users' involvement in the media is determined by both the entertaining time span on the original platform and the attentional constraint of the new platform. The mismatch between the two spans can result in lower level involvement, which in turn cause no or even negative user emotional responses. The model was tested with empirical data. We discuss the theoretical contributions, strategic and design implications, and future research directions derived from this theoretical framewor

    Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4

    Full text link
    Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodynamic and transport properties of a theoretically predicted Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low temperatures down to 0.4 K. Remarkably, NbIrTe4 exhibits a nonsaturating transverse magnetoresistance which follows a power-law dependence in B. Low-field Hall measurements reveal that hole-like carriers dominate the transport for T >> 80 K, while the significant enhancement of electron mobilities with lowering T results in a non-negligible contribution from electron-like carriers which is responsible for the observed non-linear Hall resistivity at low T. The Shubnikov-de Haas oscillations of the Hall resistivity under high B give the light effective masses of charge carriers and the nontrivial Berry phase associated with Weyl fermions. Further first-principles calculations confirm the existence of 16 Weyl points located at kz = 0, ±\pm0.02 and ±\pm0.2 planes in the Brillouin zone.Comment: 5 figures, 1 tabl

    Evidence for polarised boron in Co-B and Fe-B alloys

    Get PDF
    By exploiting the tunability of synchrotron radiation in measurements of spin-resolved photoemission it has proved possible to obtain information on the polarisation of the valence electrons of Co-B and Fe-B amorphous magnetic alloys, Both the spin-integrated and spin-resolved energy distribution curves show a marked dependence on photon energy indicating that the p states of boron hybridise with the d states of the transition metals giving rise to mixed states in the binding energy range 1 to 5 eV, The observed polarisation and spin-resolved densities of states imply that in the above restricted energy range there is a net negative polarisation of the boron states
    • …
    corecore