10,578 research outputs found

    Frequency locking of modulated waves

    Full text link
    We consider the behavior of a modulated wave solution to an S1\mathbb{S}^1-equivariant autonomous system of differential equations under an external forcing of modulated wave type. The modulation frequency of the forcing is assumed to be close to the modulation frequency of the modulated wave solution, while the wave frequency of the forcing is supposed to be far from that of the modulated wave solution. We describe the domain in the three-dimensional control parameter space (of frequencies and amplitude of the forcing) where stable locking of the modulation frequencies of the forcing and the modulated wave solution occurs. Our system is a simplest case scenario for the behavior of self-pulsating lasers under the influence of external periodically modulated optical signals

    Analisis Dan Alternatif Solusi Lalu Lintas Di Bundaran Jalan Teuku Umar Denpasar

    Full text link
    The volume growth of road traffic continues to increase rapidly especially in the city of Denpasar. This makes the traffic jam occurred in the city of Denpasar on rush hour, especially at Teuku Umar roundabout. The aim of research is to evaluate and find solustion occlusion at Teuku Umar roundabout. In the case try solution of traffic engineering and Development underpass .Data collection is done by a direct survey on six approaches at the foot of the roundabou at the peak hour of the morning, afternoon and evening. The captured data is the number of vehicles passing through the street that enter and roundabout exit. Analysis of the performance of the roundabout by using the guidelines Indonesia Highway Capacity Manual (MKJI) 1997. The results of the performance of the roundabout on the existing condition have average delay in roundabout 16,98 sec/hours at condition scenario 1 with traffic engineering average delay in roundabout drop to 8,07 sec/hours consequence incresing the number of venicles on Teuku Umar Timur street, Teuku Umar Barat street, Imam Bonjol street, Diponegoro street which degree of saturation before 0,43, 021, 0,55, 0,64 and after the traffic egineering rise to 0,58,0,24,0,66, 0,80. In scenario 2 with development underpass average delay in roundabout drop to 4,53 sec/hours and value is smaller than scenario 1 traffic engineering to overcome congestion at Teuku Umar roundabout its recommendation scenario 2 development underpass. Development underpaas could occur when land acquistion well prepared

    Reliable Bonding of Composite Laminates Using Reflowable Epoxy Resins

    Get PDF
    Epoxy matrix composites assembled with adhesives maximize the performance of aerospace structures, but the possibility of forming weak bonds requires the installation of redundant fasteners, which add weight and manufacturing cost. Co-cured joints (e.g. unitized composite structures) are immune to weak bonds because the uncured resin undergoes diffusion and mixing through the joint. A means of co-curing complex structures may reduce the need for redundant fasteners in bondlines. To this end, NASA started the AERoBOND project to develop novel joining materials to enable a secondary-co-cure assembly process. Aerospace epoxy resin systems reformulated with offset stoichiometry prevented the resin from advancing beyond the gel point during a conventional autoclave cure cycle up to 180 C. The offset resins were applied to the joining surfaces of laminate preforms as prepreg. Two surfaces with complimentary offset resins were joined using conventional secondary bonding techniques. Preliminary efforts have indicated that the resulting joint has no discernable interface and appears as a conventional co-cured laminate under optical magnification. This report will discuss the initial work performed regarding formulation of the epoxy resin system using calorimetry, rheology, and mechanical testing

    Scaling law of Wolff cluster surface energy

    Full text link
    We study the scaling properties of the clusters grown by the Wolff algorithm on seven different Sierpinski-type fractals of Hausdorff dimension 1<df31 < d_f \le 3 in the framework of the Ising model. The mean absolute value of the surface energy of Wolff cluster follows a power law with respect to the lattice size. Moreover, we investigate the probability density distribution of the surface energy of Wolff cluster and are able to establish a new scaling relation. It enables us to introduce a new exponent associated to the surface energy of Wolff cluster. Finally, this new exponent is linked to a dynamical exponent via an inequality.Comment: 12 pages, 3 figures. To appear in PR

    Towards a Notion of Distributed Time for Petri Nets

    No full text
    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models

    Non-uniform Black Strings with Schwarzschild-(Anti-)de Sitter Foliation

    Get PDF
    We present some exact non-uniform black string solutions of 5-dimensional pure Einstein gravity as well as Einstein-Maxwell-dilaton theory at arbitrary dilaton coupling. The solutions share the common property that their 4-dimensional slices are Schwarzchild-(anti-)de Sitter spacetimes. The pure gravity solution is also generalized to spacetimes of dimensions higher than 5 to get non-uniform black branes.Comment: LaTeX 14 pages, 3 eps figures. V2: version appeared in CQ

    The UV Upturn in Elliptical Galaxies as an Age Indicator

    Full text link
    We show that the UV flux of old stellar systems can tell us about their ages. Two independent populations synthesis groups that have had wildly different views have here worked together and generated two solutions that can be easily tested using space telescopes. Proposed tests will constrain the ages of giant Es, that are often considered the oldest populations in the universe, and thus cosmology.Comment: LaTeX and 11 eps figures Accepted for publication in Ap

    Statefinder diagnostic for cosmology with the abnormally weighting energy hypothesis

    Full text link
    In this paper, we apply the statefinder diagnostic to the cosmology with the Abnormally Weighting Energy hypothesis (AWE cosmology), in which dark energy in the observational (ordinary matter) frame results from the violation of weak equivalence principle (WEP) by pressureless matter. It is found that there exist closed loops in the statefinder plane, which is an interesting characteristic of the evolution trajectories of statefinder parameters and can be used to distinguish AWE cosmology from the other cosmological models.Comment: 5 pages, 4 figures, accepted by PR

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Thermal Unparticles: A New Form of Energy Density in the Universe

    Full text link
    Unparticle \U with scaling dimension d_\U has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter \omega_\U, the ratio of pressure to energy density, is given by 1/(2d_\U +1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density \rho_\U(T) evolves dramatically differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a high decoupling temperature TDT_D is very small, it is possible to have a large relic density \rho_\U(T^0_\gamma) at present photon temperature Tγ0T^0_\gamma, large enough to play the role of dark matter. We calculate TDT_D and \rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version
    corecore