15 research outputs found
A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics
Cells acquire the invasive and migratory properties necessary for the invasion-metastasis cascade and the establishment of aggressive, metastatic disease by reactivating a latent embryonic programme: epithelial-to-mesenchymal transition (EMT). Herein, we report the development of a new, spontaneous model of EMT which involves four phenotypically distinct clones derived from a primary tumour-derived human prostate cancer cell line (OPCT-1), and its use to explore relationships between EMT and the generation of cancer stem cells (CSCs) in prostate cancer. Expression of epithelial (E-cadherin) and mesenchymal markers (vimentin, fibronectin) revealed that two of the four clones were incapable of spontaneously activating EMT, whereas the others contained large populations of EMT-derived, vimentin-positive cells having spindle-like morphology. One of the two EMT-positive clones exhibited aggressive and stem cell-like characteristics, whereas the other was non-aggressive and showed no stem cell phenotype. One of the two EMT-negative clones exhibited aggressive stem cell-like properties, whereas the other was the least aggressive of all clones. These findings demonstrate the existence of distinct, aggressive CSC-like populations in prostate cancer, but, importantly, that not all cells having a potential for EMT exhibit stem cell-like properties. This unique model can be used to further interrogate the biology of EMT in prostate cancer
Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers
Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition
Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells
At the molecular level, epithelial-to-mesenchymal transition (EMT) necessitates extensive transcriptional reprogramming which is orchestrated by a small group of gene-regulatory factors that include the zinc-finger DNA-binding protein SNAIL1. Although SNAIL1 is a well-known master regulator of EMT, knowledge of its immediate target genes is incomplete. Here, we used ChIP-seq to identify genes directly regulated by SNAIL1 in colorectal adenocarcinoma cells. When comparing the genomic distribution of SNAIL1 to that of the intestinal stem cell (ISC) transcription factors ASCL2 and TCF7L2, we observed a significant overlap. Furthermore, SNAIL1 ChIP-seq peaks are associated with a substantial fraction of ISC signature genes. In two colorectal cancer cell lines, we verified that SNAIL1 decreases ISC marker expression. Likewise, SNAIL1 directly represses the proto-oncogene MYB, and the long noncoding RNA (lncRNA) WiNTRLINC1, a recently described regulator of ASCL2. SNAIL1 targets multiple regulatory elements at the MYB and WiNTRLINC1 loci, and displaces ASCL2 and TCF7L2 from their binding regions at a MYB downstream regulatory element. Correlation analyses and expression profiling showed antiparallel expression of SNAIL1 and MYB in colorectal and breast cancer cell lines and tumor transcriptomes, suggesting that SNAIL1 controls MYB expression in different tissues. MYB loss-of-function attenuated proliferation and impaired clonogenicity in two- and three-dimensional cell cultures. Therefore, SNAIL1-mediated downregulation of MYB and ISC markers like WiNTRLINC1 likely contributes to the decrease in proliferation known to be associated with EMT, while simultaneously abrogating stemness features of colorectal cancer cells. Apparently, the relationship between EMT and stemness varies in different tumor entities
