24,623 research outputs found
Electrical conductivity and thermal dilepton rate from quenched lattice QCD
We report on a continuum extrapolation of the vector current correlation
function for light valence quarks in the deconfined phase of quenched QCD. This
is achieved by performing a systematic analysis of the influence of cut-off
effects on light quark meson correlators at using clover
improved Wilson fermions. We discuss resulting constraints on the electrical
conductivity and the thermal dilepton rate in a quark gluon plasma. In addition
new results at 1.2 and 3.0 will be presented.Comment: 4 pages, 6 eps figures, to appear in the proceedings of Quark Matter
2011, 23-28 May 2011, Annecy, Franc
Computing Early-time Dynamics in Heavy Ion Collisions: Status, Problems and Prospects
We discuss some recent developments towards a quantitative understanding of
the production and early-time evolution of bulk quark-gluon matter in
ultrarelativistic heavy ion collisions.Comment: 10 pages, Invited Talk, Workshop on "QCD evolution of parton
distributions: from collinear to non-collinear case", Newport News, VA, 8 - 9
Apr 201
Effective Kinetic Theory for High Temperature Gauge Theories
Quasiparticle dynamics in relativistic plasmas associated with hot,
weakly-coupled gauge theories (such as QCD at asymptotically high temperature
) can be described by an effective kinetic theory, valid on sufficiently
large time and distance scales. The appropriate Boltzmann equations depend on
effective scattering rates for various types of collisions that can occur in
the plasma. The resulting effective kinetic theory may be used to evaluate
observables which are dominantly sensitive to the dynamics of typical
ultrarelativistic excitations. This includes transport coefficients
(viscosities and diffusion constants) and energy loss rates. We show how to
formulate effective Boltzmann equations which will be adequate to compute such
observables to leading order in the running coupling of high-temperature
gauge theories [and all orders in ]. As previously proposed
in the literature, a leading-order treatment requires including both
particle scattering processes as well as effective ``'' collinear
splitting processes in the Boltzmann equations. The latter account for nearly
collinear bremsstrahlung and pair production/annihilation processes which take
place in the presence of fluctuations in the background gauge field. Our
effective kinetic theory is applicable not only to near-equilibrium systems
(relevant for the calculation of transport coefficients), but also to highly
non-equilibrium situations, provided some simple conditions on distribution
functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde
Can transport peak explain the low-mass enhancement of dileptons at RHIC?
We propose a novel relation between the low-mass enhancement of dielectrons
observed at PHENIX and transport coefficients of QGP such as the charge
diffusion constant and the relaxation time . We parameterize
the transport peak in the spectral function using the second-order relativistic
dissipative hydrodynamics by Israel and Stewart. Combining the spectral
function and the full (3+1)-dimensional hydrodynamical evolution with the
lattice EoS, theoretical dielectron spectra and the experimental data are
compared. Detailed analysis suggests that the low-mass dilepton enhancement
originates mainly from the high-temperature QGP phase where there is a large
electric charge fluctuation as obtained from lattice QCD simulations.Comment: To appear in the conference proceedings for Quark Matter 2011, May 23
- May 28, Annecy, Franc
Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle
U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings
Thermodynamic phase transitions and shock singularities
We show that under rather general assumptions on the form of the entropy
function, the energy balance equation for a system in thermodynamic equilibrium
is equivalent to a set of nonlinear equations of hydrodynamic type. This set of
equations is integrable via the method of the characteristics and it provides
the equation of state for the gas. The shock wave catastrophe set identifies
the phase transition. A family of explicitly solvable models of
non-hydrodynamic type such as the classical plasma and the ideal Bose gas are
also discussed.Comment: revised version, 18 pages, 6 figure
Electroweak gauge boson production at hadron colliders through O(alpha_s^2)
We describe a calculation of the O(alpha_s^2) QCD corrections to the fully
differential cross section for W and Z boson production in hadronic collisions.
The result is fully realistic in that it includes spin correlations, finite
width effects, gamma-Z interference and allows for the application of arbitrary
cuts on the leptonic decay products of the W and Z. We have implemented this
calculation into a numerical program. We demonstrate the use of this code by
presenting phenomenological results for several future LHC analyses and recent
Tevatron measurements, including the W cross section in the forward rapidity
region and the central over forward cross section ratio.Comment: 11 pages, 4 figure
Integrability of one degree of freedom symplectic maps with polar singularities
In this paper, we treat symplectic difference equations with one degree of
freedom. For such cases, we resolve the relation between that the dynamics on
the two dimensional phase space is reduced to on one dimensional level sets by
a conserved quantity and that the dynamics is integrable, under some
assumptions. The process which we introduce is related to interval exchange
transformations.Comment: 10 pages, 2 figure
Barbell back squat:How do resistance bands affect muscle activation and knee kinematics?
ObjectivesThis study aimed to determine whether looped resistance bands affect knee kinematics and lower body muscle activation during the barbell back squat.MethodsTwenty-six healthy participants (13 female, 13 male) calculated their one repetition maximum (RM) prior to data collection. Each participant performed three squats at both 80% and 40% 1RM wearing a light resistance band, an extra-heavy resistance band and no resistance band.Vicon 3D motion analysis cameras were used to collect the kinematic data, and Delsys Trigno Lab wireless electromyography (EMG) system was used to measure vastus medialis, vastus lateralis, gluteus maximus, gluteus medius and biceps femoris muscle activity. Peak knee flexion angle, peak knee valgus angle and maximum tibial rotation values were examined. Peak EMG values were also analysed after being normalised and expressed as a percentage of maximum voluntary contraction (MVC).ResultsGluteus maximus (GM) activity is significantly increased when a resistance band is used during squatting. However, squatting with a resistance band is detrimental to knee kinematics as it leads to an increase in knee valgus angle and maximum tibial rotation angle. A direct correlation is recorded between an increase in resistance and an increase in these two angles.ConclusionsSquatting with resistance bands is likely to increase the risk of knee injury. Coaches and clinicians who already implement this technique are advised to remove resistance band squats from training and rehabilitation programmes. Further research evaluating the long-term effects of using resistance bands during the barbell back squat should be considered
Intensity interferometry of thermal photons from relativistic heavy ion collisions
Intensity interferometry of thermal photons, having transverse momenta 0.1 -- 2.0 GeV, produced in relativistic collision of heavy nuclei is
studied. It is seen to provide an accurate information about the temporal and
spatial structure of the interacting system. The source dimensions and their
dependence revealed by the photon interferometry, display a richness not
seen in pion interferometry. We attribute this to difference in the source
functions, the fact that photons come out from every stage of the collision and
from every point in the system, and the fact that the rate of production of
photons is different for the quark-gluon plasma, which dominates the early hot
stage, and the hadronic matter which populates the last phase of the collision
dynamics. The usefulness of this procedure is demonstrated by an application to
collision of lead nuclei at the CERN SPS. Prediction for the transverse
momentum dependence of the sizes for SPS, RHIC, and LHC energies are given.Comment: 16 pages, 11 figures. Added discussions and references. To appear in
Phys. Rev.
- …