360 research outputs found

    Game theoretic pricing models in hotel revenue management: an equilibrium choice-based conjoint analysis approach

    Get PDF
    This paper explores a game-theoretically founded approach to conjoint analysis that determines equilibrium room rates under differentiated price competition in an oligopolistic hotel market. Competition between hotels is specified in terms of market share functions that can be estimated using multinomial logit models of consumer choice. The approach is based on choice-based conjoint analysis that permits the estimation of attributes weights (“part-worths”) for an additive utility formulation of the utility function. From this, room rates that equilibrate the market, conditioned on the differences in services and facilities offered by competing hotels, can be determined. The approach is illustrated by an example

    HST/WFPC2 imaging of the circumnuclear structure of LLAGNs. I Data and nuclear morphology

    Full text link
    To advance our knowledge of the nature of the central source in LLAGNs and its relation with stellar clusters, we are carrying out several imaging projects with HST at near-UV, optical and near-IR wavelengths. In this paper, we present the first results obtained with observations of the central regions of 57 LLAGNs imaged with the WFPC2 through any of the V (F555W, F547M, F614W) and I (F791W, F814W) filters that are available in the HST archive. The sample contains 34% of the LINERs and 36% of the TOs in the Palomar sample. The mean spatial resolution of these images is 10 pc. With these data we have built an atlas that includes structural maps for all the galaxies, useful to identify compact nuclear sources and, additionally, to characterize the circumnuclear environment of LLAGNs, determining the frequency of dust and its morphology. The main results obtained are: 1) We have not found any correlation between the presence of nuclear compact sources and emission-line type. Thus, nucleated LINERs are as frequent as nucleated TOs. 2) The nuclei of "Young-TOs" are brighter than the nuclei of "Old-TOs" and LINERs. These results confirm our previous results that Young-TOs are separated from other LLAGNs classes in terms of their central stellar population properties and brightness. 3) Circumnuclear dust is detected in 88% of the LLAGNs, being almost ubiquitous in TOs. 4) The dust morphology is complex and varied, from nuclear spiral lanes to chaotic filaments and nuclear disk-like structures. Chaotic filaments are as frequent as dust spirals; but nuclear disks are mainly seen in LINERs. These results suggest an evolutionary sequence of the dust in LLAGNs, LINERs being the more evolved systems and Young-TOs the youngest. The full collection of figures are at http://www.iaa.es/~rosa/research/LLAGNs2007/LLAGNs-HSTIma1.htmlComment: Paper accepted in AJ, pdf file and the full collection of figures are at the ULR: http://www.iaa.es/~rosa/research/LLAGNs2007/LLAGNs-HSTIma1.htm

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm

    Cosmological Constraints from Galaxy Clusters in the 2500 square-degree SPT-SZ Survey

    Get PDF
    (abridged) We present cosmological constraints obtained from galaxy clusters identified by their Sunyaev-Zel'dovich effect signature in the 2500 square degree South Pole Telescope Sunyaev Zel'dovich survey. We consider the 377 cluster candidates identified at z>0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a LCDM cosmology, where the species-summed neutrino mass has the minimum allowed value (mnu = 0.06 eV) from neutrino oscillation experiments, we combine the cluster data with a prior on H0 and find sigma_8 = 0.797+-0.031 and Omega_m = 0.289+-0.042, with the parameter combination sigma_8(Omega_m/0.27)^0.3 = 0.784+-0.039. These results are in good agreement with constraints from the CMB from SPT, WMAP, and Planck, as well as with constraints from other cluster datasets. Adding mnu as a free parameter, we find mnu = 0.14+-0.08 eV when combining the SPT cluster data with Planck CMB data and BAO data, consistent with the minimum allowed value. Finally, we consider a cosmology where mnu and N_eff are fixed to the LCDM values, but the dark energy equation of state parameter w is free. Using the SPT cluster data in combination with an H0 prior, we measure w = -1.28+-0.31, a constraint consistent with the LCDM cosmological model and derived from the combination of growth of structure and geometry. When combined with primarily geometrical constraints from Planck CMB, H0, BAO and SNe, adding the SPT cluster data improves the w constraint from the geometrical data alone by 14%, to w = -1.023+-0.042
    corecore