1,063 research outputs found
Entanglement Property and Monogamy Relation of Gerneralized Mixed W
We introduce a new class of multipartite entangled mixed states with pure
state decompositions of generalized W states, similar to Schmidt-correlated
states having generalized GHZ states in the pure state decomposition. The
entanglement and separability properties are studied according to PPT
operations. Monogamy relations linked to these states are also investigated.Comment: 8 page
Inequalities Detecting Quantum Entanglement for Systems
We present a set of inequalities for detecting quantum entanglement of
quantum states. For and systems, the
inequalities give rise to sufficient and necessary separability conditions for
both pure and mixed states. For the case of , these inequalities are
necessary conditions for separability, which detect all entangled states that
are not positive under partial transposition and even some entangled states
with positive partial transposition. These inequalities are given by mean
values of local observables and present an experimental way of detecting the
quantum entanglement of quantum states and even multi-qubit pure
states.Comment: 6 page
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Operator entanglement of two-qubit joint unitary operations is revisited.
Schmidt number is an important attribute of a two-qubit unitary operation, and
may have connection with the entanglement measure of the unitary operator. We
found the entanglement measure of two-qubit unitary operators is classified by
the Schmidt number of the unitary operators. The exact relation between the
operator entanglement and the parameters of the unitary operator is clarified
too.Comment: To appear in the Brazilian Journal of Physic
On the Detectability of Galactic Dark Matter Annihilation into Monochromatic Gamma-rays
Monochromatic gamma-rays are thought to be the smoking gun signal for
identifying the dark matter annihilation. However, the flux of monochromatic
gamma-rays is usually suppressed by the virtual quantum effects since dark
matter should be neutral and does not couple with gamma-rays directly. In the
work we study the detection strategy of the monochromatic gamma-rays in a
future space-based detector. The monochromatic gamma-ray flux is calculated by
assuming supersymmetric neutralino as a typical dark matter candidate. We
discuss both the detection focusing on the Galactic center and in a scan mode
which detects gamma-rays from the whole Galactic halo are compared. The
detector performance for the purpose of monochromatic gamma-rays detection,
with different energy and angular resolution, field of view, background
rejection efficiencies, is carefully studied with both analytical and fast
Monte-Carlo method
Quantum tunneling of two coupled single-molecular magnets
Two single-molecule magnets are coupled antiferromagnetically to form a
supramolecule dimer. We study the coupling effect and tunneling process by
means of the numerical exact diagonalization method, and apply them to the
recently synthesized supramoleculer dimer [Mn4]2 The model parameters are
calculated for the dimer based on the tunneling process. The absence of
tunneling at zero field and sweeping rate effect on the step height in the
hysterisis loops are understood very well in this theory.Comment: 4 pages including 3 figure and 1 tabl
Urban energy consumption and CO2 emissions in Beijing: current and future
This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions
Separability and entanglement in 2x3xN composite quantum systems
The separability and entanglement of quantum mixed states in \Cb^2 \otimes
\Cb^3 \otimes \Cb^N composite quantum systems are investigated. It is shown
that all quantum states with positive partial transposes and rank
are separable.Comment: Latex, 15 page
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs
We report the temperature dependent x-ray powder diffraction of the
quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K
and 95 K. We have detected the structural phase transition from the tetragonal
phase, with P4/nmm space group, to the orthorhombic or monoclinic phase, with
Cmma or P112/a1 (or P2/c) space group, over a broad temperature range from 150
K to 120 K, centered at T0 ~137 K. Therefore the temperature of this structural
phase transition is strongly reduced, by about ~30K, by increasing the internal
chemical pressure going from LaOFeAs to NdOFeAs. In contrast the
superconducting critical temperature increases from 27 K to 51 K going from
LaOFeAs to NdOFeAs doped samples. This result shows that the normal striped
orthorhombic Cmma phase competes with the superconducting tetragonal phase.
Therefore by controlling the internal chemical pressure in new materials it
should be possible to push toward zero the critical temperature T0 of the
structural phase transition, giving the striped phase, in order to get
superconductors with higher Tc.Comment: 9 pages, 3 figure
Experimental Determination of Entanglement for Arbitrary Pure States
We present a way of experimentally determining the concurrence in terms of
the expectation values of local observables for arbitrary multipartite pure
states. In stead of the joint measurements on two copies of a state in the
experiment for two-qubit systems [S. P. Walborn et al. Nature (London)440,
20(2006)], we only need one copy of the state in every measurement for any
arbitrary dimensional multipartite systems, avoiding the preparation of twin
states or the imperfect copy of the state.Comment: 6 page
- …
