48 research outputs found

    First record of the broad-banded cardinal fish Apogon fasciatus (White, 1790) from Turkey

    Get PDF
    Two specimens of the alien cardinal fish Apogon fasciatus (White, 1790) are recorded for the first time from Turkey and second time from the Mediterranean Sea. This is the fourth Indo-Pacific apogonid species documented in the Mediterranean Sea, and the introduction of this species to the eastern Mediterranean is due to migration from the Red Sea via the Suez Canal

    Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime

    Get PDF
    Cataloged from PDF version of article.We investigate ultrafast energy transfer between excitons and plasmons in ensembles of core-shell type nanoparticles consisting of metal core covered with a concentric thin J-aggregate (JA) shell. The high electric field localization by the Ag nanoprisms and the high oscillator strength of the JAs allow us to probe this interaction in the ultrastrong plasmon-exciton coupling regime. Linear and nonlinear optical properties of the coupled system have been measured using transient absorption spectroscopy revealing that the hybrid system shows half-plasmonic and half-excitonic properties. The tunability of the nanoprism plasmon resonance provides a flexible platform to study the dynamics of the hybrid state in a broad range of wavelengths. (C) 2014 AIP Publishing LLC

    Electrochemically tunable ultrafast optical response of graphene oxide

    Get PDF
    Cataloged from PDF version of article.We demonstrate reversible and irreversible changes in the ultrafast optical response of multilayer graphene oxide thin films upon electrical and optical stimulus. The reversible effects are due to electrochemical modification of graphene oxide, which allows tuning of the optical response by externally applied bias. Increasing the degree of reduction in graphene oxide causes excited state absorption to gradually switch to saturable absorption for shorter probe wavelengths. Spectral and temporal properties as well as the sign of the ultrafast response can be tuned either by changing the applied bias or exposing to high intensity femtosecond pulses. © 2011 American Institute of Physics

    Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers

    Get PDF
    Cataloged from PDF version of article.In this article, we demonstrate encapsulation of octakis(hexylthio) zinc phthalocyanine molecules by non-covalent supramolecular organization within self-assembled peptide nanofibers. Peptide nanofibers containing octakis(hexylthio) zinc phthalocyanine molecules were obtained via a straight-forward one-step self-assembly process under aqueous conditions. Nanofiber formation results in the encapsulation and organization of the phthalocyanine molecules, promoting ultrafast intermolecular energy transfer. The morphological, mechanical, spectroscopic and non-linear optical properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence, ultrafast pump-probe and circular dichroism spectroscopy techniques. The ultrafast pump-probe experiments of octakis(hexylthio) zinc phthalocyanine molecules indicated pH controlled non-linear optical characteristics of the encapsulated molecules within self-assembled peptide nanofibers. This method can provide a versatile approach for bottom-up fabrication of supramolecular organic electronic devices. © 2012 The Royal Society of Chemistry

    Tunable Plexcitonic Nanoparticles: A Model System for Studying Plasmon-Exciton Interaction from the Weak to the Ultrastrong Coupling Regime

    Get PDF
    Controlling the number of dye molecules on metallic nanoparticles, which in turn affects the magnitude of Rabi splitting energy, is crucial for obtaining hybrid metal core-organic shell nanoparticles with tunable optical properties in the visible spectrum since the magnitude of the Rabi splitting energy directly determines the strength of the coupling between plasmonic nanoparticles and dye molecules. In this work, we present a new method for the synthesis of plexcitonic nanoparticles, and thus we are able to control the number of dye molecules self-assembled on Ag nanoprisms (Ag NPs) by adjusting the concentration of dye molecules used in the synthesis. Indeed, individual dye molecules self-assemble into J-aggregates on Ag NPs. Thus, in the finite-element simulations and experimental data of the hybrid metal organic nanoparticles, we observed a transition from weak coupling to the ultrastrong coupling regime. Besides, ultrafast energy transfer between plasmonic nanoparticles and excitonic aggregated dye molecules has been extensively studied as a function of Rabi splitting energy. We observe that the lifetime of the polariton states increases with the coupling strength and the upper polaritons are short-lived, whereas the lower polaritons are long-lived. Hybrid metal-organic nanoparticles presented in this study (i) have tunable Rabi splitting energies, (ii) are easy to prepare in large quantities in aqueous medium, (iii) can be uniformly assembled on solid substrates, (iv) have resonance frequencies in the visible spectrum, and (v) have small mode volume, thus making them an excellent model system for studying light-matter interaction at nanoscale dimensions from the weak to ultrastrong coupling regime. © 2016 American Chemical Society

    Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media

    Get PDF
    Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack π-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type β-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A-D-A unit cells having an association constant (KA) of 5.18 × 105 M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics. © 2017 American Chemical Society

    Ultrafast transient optical loss dynamics in exciton-plasmon nano-assemblies

    Get PDF
    We study the exciton-plasmon dynamics that lead to optical loss mitigation via ultrafast transient absorption spectroscopy (UTAS) on hybrid aggregates of core-shell quantum dots (QDs) and Au nanoparticles (NPs). We highlight that generating hot electrons in plasmonic NPs contributes to the transient differential absorption spectrum under optical excitation. The results suggest modifying the method of analyzing the transient absorption spectra of loss mitigated systems. Additionally, we investigate the effect of Electron Oscillation frequency-Phonon Resonance Detuning (EOPRD) on loss mitigation efficiency. Moreover, power dependent UTAS reveal a frequency pulling like effect in the transient bleach maximum towards the gain emission. We show that the appropriate choice of the pump wavelength and by changing the pump power we can conclusively prove the existence of loss mitigation using UTAS. Finally, we study the transient kinetics of hybrid gain-plasmon systems and report interesting hybrid transient kinetics. © 2017 The Royal Society of Chemistry
    corecore