712 research outputs found
Do GnRH analogues directly affect human endometrial epithelial cell gene expression?
We examined whether Gonadotrophin-releasing hormone (GnRH) analogues [leuprolide acetate (LA) and ganirelix acetate (GA)] modulate gene expression in Ishikawa cells used as surrogate for human endometrial epithelial cells in vitro. The specific aims were: (i) to study the modulatory effect of GnRH analogues by RT –PCR [in the absence and presence of E2 and P4, and cyclic adenosine monophosphate (cAMP)] on mRNA expression of genes modulated during the window of implantation in GnRH analogues/rFSH-treated assisted reproductive technology cycles including OPTINEURIN (OPTN), CHROMATIN MODIFYING PROTEIN (CHMP1A), PROSAPOSIN (PSAP), IGFBP-5 and SORTING NEXIN 7 (SNX7), and (ii) to analyze the 5′ -flanking regions of such genes for the presence of putative steroid-response elements [estrogen-response elements (EREs) and P4-response element (PREs)]. Ishikawa cells were cytokeratin+/vimentin2 and expressed ERa, ERb, PR and GnRH-R proteins. At 6 and 24 h, neither LA nor GA alone had an effect on gene expression. GnRH analogues alone or following E2 and/or P4 co-incubation for 24 h also had no effect on gene expression, but P4 significantly increased expression of CHMP1A. E2 + P4 treatment for 4 days, alone or followed by GA, had no effect, but E2 + P4 treatment followed by LA significantly decreased IGFBP-5 expression. The addition of 8-Br cAMP did not modify gene expression, with the exception of IGFBP-5 that was significantly increased. The GnRH analogues did not modify intracellular cAMP levels. We identified conserved EREs for OPN, CHMP1A, SNX7 and PSAP and PREs for SNX7. We conclude that GnRH analogues appear not to have major direct effects on gene expression of human endometrial epithelial cells in vitro.Fil: Zhang, Xiaomei. Eastern Virginia Medical School; Estados UnidosFil: Bocca, Silvina. Eastern Virginia Medical School; Estados UnidosFil: Franchi, Nilda Anahi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Anderson, Sandra. Eastern Virginia Medical School; Estados UnidosFil: Kaur, Mandeep. King Abdullah University of Science and Technology; Arabia SauditaFil: Bajic, Vladimir B.. King Abdullah University of Science and Technology; Arabia SauditaFil: Oehninger, Sergio. Eastern Virginia Medical School; Estados Unido
Chromophore supply modulates cone function and survival in retinitis pigmentosa mouse models.
Retinitis pigmentosa (RP) is an ocular disease characterized by the loss of night vision, followed by the loss of daylight vision. Daylight vision is initiated in the retina by cone photoreceptors, which are gradually lost in RP, often as bystanders in a disease process that initiates in their neighboring rod photoreceptors. Using physiological assays, we investigated the timing of cone electroretinogram (ERG) decline in RP mouse models. A correlation between the time of loss of the cone ERG and the loss of rods was found. To investigate a potential role of the visual chromophore supply in this loss, mouse mutants with alterations in the regeneration of the retinal chromophore, 11-cis retinal, were exam- ined. Reducing chromophore supply via mutations in Rlbp1 or Rpe65 resulted in greater cone function and survival in a RP mouse model. Conversely, overexpression of Rpe65 and Lrat, genes that can drive the regeneration of the chromophore, led to greater cone degeneration. These data suggest that abnormally high chromophore supply to cones upon the loss of rods is toxic to cones, and that a potential therapy in at least some forms of RP is to slow the turnover and/or reduce the level of visual chromophore in the retina
Critical windows of exposure to household pesticides and risk of childhood leukemia.
The potential etiologic role of household pesticide exposures was examined in the Northern California Childhood Leukemia Study. A total of 162 patients (0-14 years old) with newly diagnosed leukemia were rapidly ascertained during 1995-1999, and 162 matched control subjects were randomly selected from the birth registry. The use of professional pest control services at any time from 1 year before birth to 3 years after was associated with a significantly increased risk of childhood leukemia [odds ratio (OR) = 2.8; 95% confidence interval (CI), 1.4-5.7], and the exposure during year 2 was associated with the highest risk (OR = 3.6; 95% CI, 1.6-8.3). The ORs for exposure to insecticides during the 3 months before pregnancy, pregnancy, and years 1, 2, and 3 were 1.8 (95% CI, 1.1-3.1), 2.1 (95% CI, 1.3-3.5), 1.7 (95% CI, 1.0-2.9), 1.6 (95% CI, 1.0-2.7), and 1.2 (95% CI, 0.7-2.1), respectively. Insecticide exposures early in life appear to be more significant than later exposures, and the highest risk was observed for exposure during pregnancy. Additionally, more frequent exposure to insecticides was associated with a higher risk. In contrast to insecticides, the association between herbicides and leukemia was weak and nonsignificant. Pesticides were also grouped based on where they were applied. Exposure to indoor pesticides was associated with an increased risk, whereas no significant association was observed for exposure to outdoor pesticides. The findings suggest that exposure to household pesticides is associated with an elevated risk of childhood leukemia and further indicate the importance of the timing and location of exposure
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao4842, doi:10.1126/sciadv.aao4842.In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.The National
Science Foundation (PLR-1417149; awarded to J.D.K.) primarily supported this work with
additional support provided by the U.S. Department of Energy (DE-FE0028980; awarded to
J.D.K.). Atmospheric 14C-CH4 measurements were funded by NASA via the Jet Propulsion
Laboratory (Earth Ventures project “Carbon in Arctic Reservoirs Vulnerability Experiment”) to
the University of Colorado under contract 1424124. K.M.S. acknowledges support from the
University of Minnesota Grant-in-Aid program
Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model
Water stress during reproductive growth is a major yield constraint for wheat (Triticum aestivum L). We previously established a controlled environment drought tolerance phenotyping method targeting the young microspore stage of pollen development. This method eliminates stress avoidance based on flowering time. We substituted soil drought treatments by a reproducible osmotic stress treatment using hydroponics and NaCl as osmolyte. Salt exclusion in hexaploid wheat avoids salt toxicity, causing osmotic stress. A Cranbrook x Halberd doubled haploid (DH) population was phenotyped by scoring spike grain numbers of unstressed (SGNCon) and osmotically stressed (SGNTrt) plants. Grain number data were analyzed using a linear mixed model (LMM) that included genetic correlations between the SGNCon and SGNTrt traits. Viewing this as a genetic regression of SGNTrt on SGNCon allowed derivation of a stress tolerance trait (SGNTol). Importantly, and by definition of the trait, the genetic effects for SGNTol are statistically independent of those for SGNCon. Thus they represent non-pleiotropic effects associated with the stress treatment that are independent of the control treatment. QTL mapping was conducted using a whole genome approach in which the LMM included all traits and all markers simultaneously. The marker effects within chromosomes were assumed to follow a spatial correlation model. This resulted in smooth marker profiles that could be used to identify positions of putative QTL. The most influential QTL were located on chromosome 5A for SGNTol (126cM; contributed by Halberd), 5A for SGNCon (141cM; Cranbrook) and 2A for SGNTrt (116cM; Cranbrook). Sensitive and tolerant population tail lines all showed matching soil drought tolerance phenotypes, confirming that osmotic stress is a valid surrogate screening method
Widely adaptable oil-in-water gel emulsions stabilized by an amphiphilic hydrogelator derived from dehydroabietic acid
A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm, but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers
Optic disc shape in patients with long-lasting unilateral esotropia and exotropia
Background: Horizontal eye movements have been proposed to induce biomechanical stress and strain on optic nerve head. Since strabismus may lead to sustained adduction or abduction, we investigate the effects of long lasting unilateral horizontal strabismus on the morphology of optic disc.
Methods: The observational cross-sectional study included patients with unilateral constant horizontal strabismus lasting for more than two years. The patients underwent an ophthalmological examination including refraction and morphometry of the optic nerve head. A prism cover test using right angle glass prism was performed to measure the magnitude of the ocular deviation.
Results: The study included 70 patients with a unilateral constant strabismus (35 esotropic patients, 35 exotropic patients) with a mean age of 26 ± 19 years, mean refractive error of − 0.72 ± 3.3 diopters, mean axial length of 23.8 ± 1.7 mm, and a mean angle of deviation of 87 ± 36 prism diopters (Chinese right-angle glass method) in the esotropic group and − 97 ± 29 prism diopters in the exotropic group. In the whole study population and taken separately in the esotropic group and exotropic group, the disc ovality index (defined as ratio of minimal-to-maximal optic disc diameter) did not differ significantly between the deviating eyes and the contralateral fixating eyes (all P > 0.05). As a corollary, the disc ovality index and the prevalence of parapapillary beta/gamma zone did not differ significantly between the esotropic group and the exotropic group (all P > 0.05).
Conclusions: Optic disc ovality did not differ markedly among long-lasting esotropic eyes, exotropic eyes, and non-strabismic eyes. It suggests that optic disc shape may not be markedly influenced in non-highly myopic eyes by a potential backward pull of the optic nerve on the optic disc structures in adduction or abduction
Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis
Background: Na/K-ATPase decrease has been reported in patients with heart failure and is related to cardiac dysfunction.
Results: Reducing Na/K-ATPase activates caspase 9 and induces cardiac dilation when treated with marinobufagenin.
Conclusion: Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac myocyte apoptosis.
Significance: Decreased Na/K-ATPase content together with increased cardiotonic steroids levels is a novel mechanism that may account for cardiac dysfunction
Dynamic redox and nutrient cycling response to climate forcing in the Mesoproterozoic ocean
Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions
- …