372 research outputs found
Statistical Description of Acoustic Turbulence
We develop expressions for the nonlinear wave damping and frequency
correction of a field of random, spatially homogeneous, acoustic waves. The
implications for the nature of the equilibrium spectral energy distribution are
discussedComment: PRE, Submitted. REVTeX, 16 pages, 3 figures (not included) PS Source
of the paper with figures avalable at
http://lvov.weizmann.ac.il/onlinelist.htm
Dispersion Coefficients by a Field-Theoretic Renormalization of Fluid Mechanics
We consider subtle correlations in the scattering of fluid by randomly placed
obstacles, which have been suggested to lead to a diverging dispersion
coefficient at long times for high Peclet numbers, in contrast to finite
mean-field predictions. We develop a new master equation description of the
fluid mechanics that incorporates the physically relevant fluctuations, and we
treat those fluctuations by a renormalization group procedure. We find a finite
dispersion coefficient at low volume fraction of disorder and high Peclet
numbers.Comment: 4 pages, 1 figure; to appear in Phys. Rev. Let
Defect generation and deconfinement on corrugated topographies
We investigate topography-driven generation of defects in liquid crystals
films coating frozen surfaces of spatially varying Gaussian curvature whose
topology does not automatically require defects in the ground state. We study
in particular disclination-unbinding transitions with increasing aspect ratio
for a surface shaped as a Gaussian bump with an hexatic phase draped over it.
The instability of a smooth ground state texture to the generation of a single
defect is also discussed. Free boundary conditions for a single bump are
considered as well as periodic arrays of bumps. Finally, we argue that defects
on a bump encircled by an aligning wall undergo sharp deconfinement transitions
as the aspect ratio of the surface is lowered.Comment: 24 page
Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands
Notes about Passive Scalar in Large-Scale Velocity Field
We consider advection of a passive scalar theta(t,r) by an incompressible
large-scale turbulent flow. In the framework of the Kraichnan model the whole
PDF's (probability distribution functions) for the single-point statistics of
theta and for the passive scalar difference theta(r_1)-theta(r_2) (for
separations r_1-r_2 lying in the convective interval) are found.Comment: 19 pages, RevTe
Exact Resummations in the Theory of Hydrodynamic Turbulence: II A Ladder to Anomalous Scaling
In paper I of this series on fluid turbulence we showed that exact
resummations of the perturbative theory of the structure functions of velocity
differences result in a finite (order by order) theory. These findings exclude
any known perturbative mechanism for anomalous scaling of the velocity
structure functions. In this paper we continue to build the theory of
turbulence and commence the analysis of nonperturbative effects that form the
analytic basis of anomalous scaling. Starting from the Navier-Stokes equations
(at high Reynolds number Re) we discuss the simplest examples of the appearance
of anomalous exponents in fluid mechanics. These examples are the nonlinear
(four-point) Green's function and related quantities. We show that the
renormalized perturbation theory for these functions contains ``ladder``
diagrams with (convergent!) logarithmic terms that sum up to anomalous
exponents. Using a new sum rule which is derived here we calculate the leading
anomalous exponent and show that it is critical in a sense made precise below.
This result opens up the possibility of multiscaling of the structure functions
with the outer scale of turbulence as the renormalization length. This
possibility will be discussed in detail in the concluding paper III of this
series.Comment: PRE in press, 15 pages + 21 figures, REVTeX, The Eps files of figures
will be FTPed by request to [email protected]
Relaxation of a kinetic hole due to carrier-carrier scattering in multisubband single-quantum-well semiconductors
Numerical study of the spherically-symmetric Gross-Pitaevskii equation in two space dimensions
We present a numerical study of the time-dependent and time-independent
Gross-Pitaevskii (GP) equation in two space dimensions, which describes the
Bose-Einstein condensate of trapped bosons at ultralow temperature with both
attractive and repulsive interatomic interactions. Both time-dependent and
time-independent GP equations are used to study the stationary problems. In
addition the time-dependent approach is used to study some evolution problems
of the condensate. Specifically, we study the evolution problem where the trap
energy is suddenly changed in a stable preformed condensate. In this case the
system oscillates with increasing amplitude and does not remain limited between
two stable configurations. Good convergence is obtained in all cases studied.Comment: 9 latex pages, 7 postscript figures, To appear in Phys. Rev.
Dynamic Fluctuation Phenomena in Double Membrane Films
Dynamics of double membrane films is investigated in the long-wavelength
limit including the overdamped squeezing mode. We demonstrate that thermal
fluctuations essentially modify the character of the mode due to its nonlinear
coupling to the transversal shear hydrodynamic mode. The corresponding Green
function acquires as a function of the frequency a cut along the imaginary
semi-axis. Fluctuations lead to increasing the attenuation of the squeezing
mode it becomes larger than the `bare' value.Comment: 7 pages, Revte
Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow
Field theoretical renormalization group methods are applied to a simple model
of a passive scalar quantity advected by the Gaussian non-solenoidal
(``compressible'') velocity field with the covariance . Convective range anomalous scaling for the structure
functions and various pair correlators is established, and the corresponding
anomalous exponents are calculated to the order of the
expansion. These exponents are non-universal, as a result of the degeneracy of
the RG fixed point. In contrast to the case of a purely solenoidal velocity
field (Obukhov--Kraichnan model), the correlation functions in the case at hand
exhibit nontrivial dependence on both the IR and UV characteristic scales, and
the anomalous scaling appears already at the level of the pair correlator. The
powers of the scalar field without derivatives, whose critical dimensions
determine the anomalous exponents, exhibit multifractal behaviour. The exact
solution for the pair correlator is obtained; it is in agreement with the
result obtained within the expansion. The anomalous exponents for
passively advected magnetic fields are also presented in the first order of the
expansion.Comment: 31 pages, REVTEX file. More detailed discussion of the
one-dimensional case and comparison to the previous paper [20] are given;
references updated. Results and formulas unchange
- …
