3,578 research outputs found

    A Case of Multiple Stun Attempts in a Bovine Due to Chronic Disease Process Causing Cranial Abnormalities

    Get PDF
    The preslaughter stunning of bovine animals is a legal requirement in the European Union, unless the animal is being slaughtered according to religious rite. The legislation also requires the investigation and review of stunning methods in cases of failure to stun. This paper presents the results of one investigation into the possible reasons for multiple stun attempts on an animal that received five shot applications. The head was hard frozen to prevent the deformation of brain structures during splitting along the sagittal plane, and then underwent macroscopic examination to assess the likely causes of the repeated stun attempts. In this case, a pre-existing chronic disease process produced anatomical variations of the cranial cavity, increasing the thickness of the sinuses of the frontal bone to a depth of 9 cm and filling the sinuses with a fibrinous pus deposit. It was therefore concluded that the anatomical variation produced by the chronic disease process, in addition to the energy absorption provided by the thicker hide and fibrinous pus, led to the failure of the stunning equipment to achieve the desired stunned state in the animal. As the animal displayed cranial variation before slaughter, a review of the stunning systems should include a requirement that animals displaying any abnormalities should be stunned with the highest-powered cartridge available or a free bullet

    A staging scheme for the development of the moth midge Clogmia albipunctata.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.Model organisms, such as Drosophila melanogaster, allow us to address a wide range of biological questions with experimental rigour. However, studies in model species need to be complemented by comparative studies if we are to fully understand the functional properties and evolutionary history of developmental processes. The establishment of new model organisms is crucial for this purpose. One of the first essential steps to establish a species as an experimental model is to carefully describe its life cycle and development. The resulting staging scheme serves as a framework for molecular studies, and allows us to homologise developmental processes between species. In this paper, we have characterised the life cycle and development of an emerging non-drosophilid dipteran model system: the moth midge Clogmia albipunctata. In particular, we focus on early embryogenesis (cleavage and blastoderm cycles before gastrulation), on formation and retraction of extraembryonic tissues, and on formation of the germ line. Considering the large evolutionary distance between the two species (approximately 250 million years), we find that the development of C. albipunctata is remarkably conserved compared to D. melanogaster. On the other hand, we detect significant differences in morphology and timing affecting the development of extraembryonic tissues and the germ line. Moreover, C. albipunctata shows several heterochronic shifts, and lacks head involution and associated processes during late stages of development.The laboratory of Johannes Jaeger and this study in particular was funded by the MEC-EMBL agreement for the EMBL/CRG Research Unit in Systems Biology, by SGR grant 406 from the Catalan funding agency AGAUR, by grants BFU2009-10184 & BFU2012-33775 from the Spanish Ministry of Science (MICINN, now called MINECO), and by ERANet: ERASysBio+ grant EUI2009-04045 (MODHEART). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A staging scheme for the development of the scuttle fly Megaselia abdita

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Model organisms, such as Drosophila melanogaster, provide powerful experimental tools for the study of development. However, approaches using model systems need to be complemented by comparative studies for us to gain a deeper understanding of the functional properties and evolution of developmental processes. New model organisms need to be established to enable such comparative work. The establishment of new model system requires a detailed description of its life cycle and development. The resulting staging scheme is essential for providing morphological context for molecular studies, and allows us to homologise developmental processes between species. In this paper, we provide a staging scheme and morphological characterisation of the life cycle for an emerging non-drosophilid dipteran model system: the scuttle fly Megaselia abdita. We pay particular attention to early embryogenesis (cleavage and blastoderm stages up to gastrulation), the formation and retraction of extraembryonic tissues, and the determination and formation of germ (pole) cells. Despite the large evolutionary distance between the two species (approximately 150 million years), we find that M. abdita development is remarkably similar to D. melanogaster in terms of developmental landmarks and their relative timing.Funding: The laboratory of Johannes Jaeger and this study in particular was funded by the MEC-EMBL agreement for the EMBL/CRG Research Unit in Systems Biology, by SGR grant 406 from the Catalan funding agency AGAUR, by grants BFU2009-10184 & BFU2012-33775 from the Spanish Ministry of Science (MICINN, now called MINECO), and by ERANet: ERASysBio+ grant EUI2009-04045 (MODHEART). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Premature Senescence and Increased TGFβ Signaling in the Absence of Tgif1

    Get PDF
    Transforming growth factor β (TGFβ) signaling regulates cell cycle progression in several cell types, primarily by inducing a G1 cell cycle arrest. Tgif1 is a transcriptional corepressor that limits TGFβ responsive gene expression. Here we demonstrate that primary mouse embryo fibroblasts (MEFs) lacking Tgif1 proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. We also provide evidence that the effects of loss of Tgif1 on proliferation and senescence are not limited to primary cells. The increased DNA damage in Tgif1 null MEFs can be partially reversed by culturing cells at physiological oxygen levels, and growth in normoxic conditions also partially rescues the proliferation defect, suggesting that in the absence of Tgif1 primary MEFs are less able to cope with elevated levels of oxidative stress. Additionally, we show that Tgif1 null MEFs are more sensitive to TGFβ-mediated growth inhibition, and that treatment with a TGFβ receptor kinase inhibitor increases proliferation of Tgif1 null MEFs. Conversely, persistent treatment of wild type cells with low levels of TGFβ slows proliferation and induces senescence, suggesting that TGFβ signaling also contributes to cellular senescence. We suggest that in the absence of Tgif1, a persistent increase in TGFβ responsive transcription and a reduced ability to deal with hyperoxic stress result in premature senescence in primary MEFs

    Functions of TGIF homeodomain proteins and their roles in normal brain development and holoprosencephaly

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145285/1/ajmgc31612.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145285/2/ajmgc31612_am.pd
    • …
    corecore