1,973 research outputs found

    Phase correction at millimeter wavelengths using observations of water vapor at 22 GHz

    Get PDF
    We present results from phase correction efforts at the Owens Valley Radio Observatory millimeter array (OVRO). A brief description of the theory of phase correction is followed by a description of the water line monitors (WLMs) constructed and placed on each of the six antennas of the array. A summary of the current software in place is also included. We present examples of data corrected using this technique and the first image created using radiometric phase correction at OVRO. The phase correction system is undergoing further development and will soon be made available for general observing at the array. A brief discussion of application of the technique for future arrays (e.g. MMA, LSA, etc.) is included as a conclusion to this contribution

    Test status and experience with the 7.5 megawatt Mod-2 wind turbine cluster

    Get PDF
    The Mod-2 wind turbine cluster is described. The site preparation and construction activities are discussed, and preliminary test results, status, and plans are presented

    A Study of a Mini-drift GEM Tracking Detector

    Full text link
    A GEM tracking detector with an extended drift region has been studied as part of an effort to develop new tracking detectors for future experiments at RHIC and for the Electron Ion Collider that is being planned for BNL or JLAB. The detector consists of a triple GEM stack with a small drift region that was operated in a mini TPC type configuration. Both the position and arrival time of the charge deposited in the drift region were measured on the readout plane which allowed the reconstruction of a short vector for the track traversing the chamber. The resulting position and angle information from the vector could then be used to improve the position resolution of the detector for larger angle tracks, which deteriorates rapidly with increasing angle for conventional GEM tracking detectors using only charge centroid information. Two types of readout planes were studied. One was a COMPASS style readout plane with 400 micron pitch XY strips and the other consisted of 2x10mm2 chevron pads. The detector was studied in test beams at Fermilab and CERN, along with additional measurements in the lab, in order to determine its position and angular resolution for incident track angles up to 45 degrees. Several algorithms were studied for reconstructing the vector using the position and timing information in order to optimize the position and angular resolution of the detector for the different readout planes. Applications for large angle tracking detectors at RHIC and EIC are also discussed.Comment: Submitted to the IEEE Transactions on Nuclear Scienc

    Phase correction at millimeter wavelengths using observations of water vapor at 22 GHz

    Get PDF
    We present results from phase correction efforts at the Owens Valley Radio Observatory millimeter array (OVRO). A brief description of the theory of phase correction is followed by a description of the water line monitors (WLMs) constructed and placed on each of the six antennas of the array. A summary of the current software in place is also included. We present examples of data corrected using this technique and the first image created using radiometric phase correction at OVRO. The phase correction system is undergoing further development and will soon be made available for general observing at the array. A brief discussion of application of the technique for future arrays (e.g. MMA, LSA, etc.) is included as a conclusion to this contribution

    Exposure damage mechanisms for KCl windows in high power laser systems

    Get PDF
    An experimental study of the 10.6 micrometer and 0.6328 micrometer optical properties of single crystal and europium doped polycrystal is described. Significant variations in the optical properties are observed over periods of exposure up to 100 hours. Models are proposed to predict the 10.6 micrometer absorptivity for long exposure periods. Mechanical creep has been detected in both materials at high temperature

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+e−e^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    The Ursinus Weekly, April 16, 1962

    Get PDF
    Jane Mikuliak is prom queen; New Cub & Key men tapped • Sokoloffs sparkle in Forum program • Dr. Tornetta to address pre-medicals on Tuesday • Christianity versus communism heads weekend Y retreat • Building program rolls as ground broken for new heating and power plant Monday • Y slates 2-part seminar on modern art beginning this Wednesday evening • MSGA elections • PSEA sponsors high school day here • Navy information team to explain training program • Ursinus to give college S.S. qualification tests • IRC represents Yemen in recent Model UN session • Young Republicans slate events for coming month • Editorial: What\u27s wrong?; Two kinds of people; Friday the 13th • Jayne Mansfield exhilarates UC\u27s Martin, Kinzley • Chekhov\u27s Bear is ambitious calling • Letters to the editor • Intramural corner • Siebmen shine in victory over PMC, suffer defeat at hands of Delaware • Cindermen lose to Haverford power, return to stop Albrighters Saturday • Greek gleanings • Conservative coed visits Dixielandhttps://digitalcommons.ursinus.edu/weekly/1317/thumbnail.jp

    The CARMA correlator

    Get PDF
    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) requires a flexible correlator to process the data from up to 23 telescopes and up to 8GHz of receiver bandwidth. The Caltech Owens Valley Broadband Reconfigurable Array (COBRA) correlator, developed for use at the Owens Valley millimeter-wave array and being used by the Sunyaev-Zeldovich Array (SZA), will be adapted for use by CARMA. The COBRA correlator system, a hybrid analog-digital design, consisting of downconverters, digitizers and correlators will be presented in this paper. The downconverters receive an input IF of 1-9GHz and produce a selectable output bandwidth of 62.5MHz, 125MHz, 250MHz, or 500MHz. The downconverter output is digitized at 1Gsample/s to 2-bits per sample. The digitized data is optionally digitally filtered to produce bands narrower than 62.5MHz (down to 2MHz). The digital correlator system is a lag- or XF-based system implemented using Field-Programmable Gate Arrays (FPGAs). The digital system implements delay lines, calculates the autocorrelations for each antenna, and the cross-correlations for each baseline. The number of lags, and hence spectral channels, produced by the system is a function of the input bandwidth; with the 500MHz band having the coarsest resolution, and the narrowest bandwidths having the finest resolution
    • …
    corecore