451 research outputs found

    Space telescope phase B definition study. Volume 2A: Science instruments, astrometer

    Get PDF
    The analysis and design of an astrometer instrument for the space telescope are discussed. The design concepts utilize the astrometric multiplexing area scanner and the OTA fine guidance sensor

    Real-time sensing of optical alignment

    Get PDF
    The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment

    Theoretical efficiency of the Princeton two-element echelle spectrograph

    Get PDF
    Echelle spectrometer for use with spaceborne stellar telescope in Advanced Princeton Satellite Stud

    On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

    No full text
    International audienceThe impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized one-dimensional radiative convective model (RCM). The influence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modified case. In order to study the sensitivity of this effect on the radiative characteristics of the ice cloud, two types of additional ice clouds were modelled: cirrus and contrails, the latter cloud type containing a higher number of smaller and less of the larger cloud particles. Ice cloud parameters are calculated on the basis of a particle size distribution which covers the range from 2 to 2000 µm, taking into consideration recent measurements which show a remarkable amount of particles smaller than 20 µm. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase in the order of 1K, ranging from 1.1 to 1.2K in July and from 0.8 to 0.9K in October depending on the radiative characteristics of the air-traffic-induced ice clouds. Modelling the current contrail cloud cover which is near 0.5% over Europe yields a surface temperature increase in the order of 0.05K

    Impact of shorter wavelengths on optical quality for laws

    Get PDF
    This study explores parametrically as a function of wavelength the degrading effects of several common optical aberrations (defocus, astigmatism, wavefronttilts, etc.), using the heterodyne mixing efficiency factor as the merit function. A 60 cm diameter aperture beam expander with an expansion ratio of 15:1 and a primary mirror focal ratio of f/2 was designed for the study. An HDOS copyrighted analysis program determined the value of merit function for various optical misalignments. With sensitivities provided by the analysis, preliminary error budget and tolerance allocations were made for potential optical wavefront errors and boresight errors during laser shot transit time. These were compared with the baseline 1.5 m CO2 laws and the optical fabrication state of the art (SOA) as characterized by the Hubble Space Telescope. Reducing wavelength and changing optical design resulted in optical quality tolerances within the SOA both at 2 and 1 micrometer. However, advanced sensing and control devices would be necessary to be tightened by a factory of 1.8 for a 2 micrometer system and by 3.6 for a 1 micrometer system relative to the baseline CO2 LAWS. Available SOA components could be used for operation at 2 micrometers but operation at 1 micrometer does not appear feasible

    Impact of shorter wavelengths on optical quality for laws

    Get PDF
    This study explores parametrically as a function of wavelength the degrading effects of several common optical aberrations (defocus, astigmatism, wavefront tilts, etc.), using the heterodyne mixing efficiency factor as the merit function. A 60 cm diameter aperture beam expander with an expansion ratio of 15:1 and a primary mirror focal ratio of f/2 was designed for the study. An HDOS copyrighted analysis program determined the value of merit function for various optical misalignments. With sensitivities provided by the analysis, preliminary error budget and tolerance allocations were made for potential optical wavefront errors and boresight errors during laser shot transit time. These were compared with the baseline l.5 m CO2 LAWS and the optical fabrication state of the art (SOA) as characterized by the Hubble Space Telescope. Reducing wavelength and changing optical design resulted in optical quality tolerances within the SOA both at 2 and 1 micrometers. However, advanced sensing and control devices would be necessary to maintain on-orbit alignment. Optical tolerance for maintaining boresight stability would have to be tightened by a factor of 1.8 for a 2 micrometers system and by 3.6 for a 1 micrometers system relative to the baseline CO2 LAWS. Available SOA components could be used for operation at 2 micrometers but operation at 1 micrometers does not appear feasible

    Spin Orientation and Spin Precession in Inversion-Asymmetric Quasi Two-Dimensional Electron Systems

    Full text link
    Inversion asymmetry induced spin splitting of the electron states in quasi two-dimensional (2D) systems can be attributed to an effective magnetic field B which varies in magnitude and orientation as a function of the in-plane wave vector k||. Using a realistic 8x8 Kane model that fully takes into account spin splitting because of both bulk inversion asymmetry and structure inversion asymmetry we investigate the spin orientation and the effective field B for different configurations of a quasi 2D electron system. It is shown that these quantities depend sensitively on the crystallographic direction in which the quasi 2D system was grown as well as on the magnitude and orientation of the in-plane wave vector k||. These results are used to discuss how spin-polarized electrons can precess in the field B(k||). As a specific example we consider GaInAs-InP quantum wells.Comment: 10 pages, 6 figure

    Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin

    Get PDF
    Purpose: To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members. Methods: Homozygosity mapping and Sanger sequencing of candidate genes were performed in one family while the other was analyzed with whole exome next-generation sequencing. A minigene splicing assay was used to confirm the splicing defects. Results: In family MA48, a novel homozygous nucleotide substitution in C8orf37, c.244–2A>C, that disrupted the consensus splice acceptor site of exon 3 was found. The minigene splicing assay revealed that this mutation activated a cryptic splice site within exon 3, causing a 22 bp deletion in the transcript that is predicted to lead to a frameshift followed by premature protein truncation. In family MA13, a novel homozygous null mutation in C8orf37, c.555G>A, p.W185*, was identified. Both mutations segregated with the disease phenotype as expected in a recessive manner and were absent in 8,244 unrelated individuals of South Asian origin. Conclusions: In this report, we describe C8orf37 mutations that cause retinal dystrophy in two families of Pakistani origin, contributing further data on the phenotype and the spectrum of mutations in this form of retinitis pigmentosa
    • …
    corecore