85 research outputs found
Inactivation of HIV-1 in breast milk by treatment with the alkyl sulfate microbicide sodium dodecyl sulfate (SDS)
BACKGROUND: Reducing transmission of HIV-1 through breast milk is needed to help decrease the burden of pediatric HIV/AIDS in society. We have previously reported that alkyl sulfates (i.e., sodium dodecyl sulfate, SDS) are microbicidal against HIV-1 at low concentrations, are biodegradable, have little/no toxicity and are inexpensive. Therefore, they may be used for treatment of HIV-1 infected breast milk. In this report, human milk was artificially infected by adding to it HIV-1 (cell-free or cell-associated) and treated with ≤1% SDS (≤10 mg/ml). Microbicidal treatment was at 37°C or room temperature for 10 min. SDS removal was performed with a commercially available resin. Infectivity of HIV-1 and HIV-1 load in breast milk were determined after treatment. RESULTS: SDS (≥0.1%) was virucidal against cell-free and cell-associated HIV-1 in breast milk. SDS could be substantially removed from breast milk, without recovery of viral infectivity. Viral load in artificially infected milk was reduced to undetectable levels after treatment with 0.1% SDS. SDS was virucidal against HIV-1 in human milk and could be removed from breast milk if necessary. Milk was not infectious after SDS removal. CONCLUSION: The proposed treatment concentrations are within reported safe limits for ingestion of SDS by children of 1 g/kg/day. Therefore, use of alkyl sulfate microbicides, such as SDS, to treat HIV1-infected breast milk may be a novel alternative to help prevent/reduce transmission of HIV-1 through breastfeeding
Global NeuroAIDS Roundtable
In May 2012, the Division of AIDS Research at the National Institute of Mental Health (NIMH) organized the “Global NeuroAIDS Roundtable” in conjunction with the 11th International Symposium on Neurovirology and the 2012 Conference on HIV in the Nervous System. The meeting was held in New York, NY, USA and brought together NIMH-funded investigators who are currently working on projects related to the neurological complications of AIDS (NeuroAIDS) in Africa, Asia, Eastern Europe, and Latin America in order to provide an opportunity to share their recent findings and discuss the challenges encountered within each country. The major goals of the roundtable were to evaluate HIV-associated neurocognitive impairment and determine if it may be directly attributable to distinct HIV subtypes or clades and to discuss the future priorities for global NeuroAIDS research. At the “Global NeuroAIDS Roundtable”, presentations of preliminary research indicated that HIV-associated neurocognitive impairment is prevalent in all countries examined regardless of which HIV clade is present in the region. The only clear-cut difference between HIV-1 clades was in relation to subtypes A and D in Uganda. However, a key point that emerged from the discussions was that there is an urgent need to standardize neurocognitive assessment methodologies across the globe before definitive conclusions can be drawn regarding the relationship between HIV clade diversity and neuropathogenesis. Future research directions were also discussed at the roundtable with particular emphasis on the potential of viral and host factor molecular interactions to impact the pathophysiology of HIV-associated neurocognitive disorders (HAND) from a global perspective
Entry of Herpes Simplex Virus Type 1 (HSV-1) into the Distal Axons of Trigeminal Neurons Favors the Onset of Nonproductive, Silent Infection
Following productive, lytic infection in epithelia, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons that is interrupted by episodes of reactivation. In order to better understand what triggers this lytic/latent decision in neurons, we set up an organotypic model based on chicken embryonic trigeminal ganglia explants (TGEs) in a double chamber system. Adding HSV-1 to the ganglion compartment (GC) resulted in a productive infection in the explants. By contrast, selective application of the virus to distal axons led to a largely nonproductive infection that was characterized by the poor expression of lytic genes and the presence of high levels of the 2.0-kb major latency-associated transcript (LAT) RNA. Treatment of the explants with the immediate-early (IE) gene transcriptional inducer hexamethylene bisacetamide, and simultaneous co-infection of the GC with HSV-1, herpes simplex virus type 2 (HSV-2) or pseudorabies virus (PrV) helper virus significantly enhanced the ability of HSV-1 to productively infect sensory neurons upon axonal entry. Helper-virus-induced transactivation of HSV-1 IE gene expression in axonally-infected TGEs in the absence of de novo protein synthesis was dependent on the presence of functional tegument protein VP16 in HSV-1 helper virus particles. After the establishment of a LAT-positive silent infection in TGEs, HSV-1 was refractory to transactivation by superinfection of the GC with HSV-1 but not with HSV-2 and PrV helper virus. In conclusion, the site of entry appears to be a critical determinant in the lytic/latent decision in sensory neurons. HSV-1 entry into distal axons results in an insufficient transactivation of IE gene expression and favors the establishment of a nonproductive, silent infection in trigeminal neurons
Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat and LTR sequence signatures
Identification of dominant-negative mutants of the herpes simplex virus type 1 immediate-early protein ICP0
ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation.</jats:p
- …
