1,091 research outputs found

    Recurrence Spectroscopy: Observation and Interpretation of Large-Scale Structure in the Absorption Spectra of Atoms in Magnetic Fields

    Get PDF
    Measurements were made of the absorption spectrum of hydrogen atoms to levels near the ionization threshold in a strong magnetic field. Taking advantage of a classical scaling law, we varied the photon energy and the magnetic-field strength simultaneously, and measured absorption versus B−1/3 at fixed scaled energy, ɛ=E/(B/Bo)2/3. The absorption rate has sinusoidal fluctuations which are correlated with closed classical orbits of the electron. Fourier transformation of this signal gives peaks, which we interpret as ‘‘recurrence strength,’’ as a function of the classical action of the closed orbit. Closed-orbit theory gives formulas for these recurrence strengths. We find that the formulas are in good agreement with the measurements. As the scaled energy is increased, observed recurrences proliferate, consistent with a change from orderly to chaotic motion of the electron. Bifurcation theory provides organizing principles for understanding this proliferation and for interpreting the data. New ‘‘exotic’’ orbits suddenly appear through saddle-node bifurcations. The ‘‘main sequence’’ of orbits is produced from an orbit parallel to B through a sequence of pitchfork and period-doubling bifurcations. Other recurrences are created by period-tripling and higher-order bifurcations of existing orbits. These bifurcations can have ‘‘generic’’ structure, or sometimes the structures are modified by symmetries of the system. Focusing effects associated with these bifurcations cause some recurrences to be particularly strong

    The CBM MVD read-out electronics

    Get PDF

    Symmetry breaking in crossed magnetic and electric fields

    Get PDF
    We present the first observations of cylindrical symmetry breaking in highly excited diamagnetic hydrogen with a small crossed electric field, and we give a semiclassical interpretation of this effect. As the small perpendicular electric field is added, the recurrence strengths of closed orbits decrease smoothly to a minimum, and revive again. This phenomenon, caused by interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig) Accepted for publication in Physical Review Letters. Difference from earlier preprint: we have discovered the cause of the earlier apparent discrepancy between experiment and theory and now achieve excellent agreemen

    Engineering, decoding and systems-level characterization of chimpanzee cytomegalovirus

    Get PDF
    The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV's cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV

    Lowering IceCube's energy threshold for point source searches in the Southern Sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current Îœ ÎŒ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (~100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.Fil: Aartsen, M. G.. University of Adelaide; AustraliaFil: Abraham, K.. Technische UniversitĂ€t MĂŒnchen; AlemaniaFil: Ackermann, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Adams, J.. University Of Canterbury; Nueva ZelandaFil: Aguilar, J. A.. UniversitĂ© Libre de Bruxelles; BĂ©lgicaFil: Golup, Geraldina Tamara. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de EnergĂ­a Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte; ArgentinaFil: Wallace, A.. University of Adelaide; AustraliaFil: Wallraff, M.. Rwth Aachen University; AlemaniaFil: Wandkowsky, N.. University of Wisconsin; Estados UnidosFil: Weaver, Ch.. University of Alberta; CanadĂĄFil: Wendt, C.. University of Wisconsin; Estados UnidosFil: Westerhoff, S.. University of Wisconsin; Estados UnidosFil: Whelan, B. J.. University of Adelaide; AustraliaFil: Whitehorn, N.. University of California at Berkeley; Estados UnidosFil: Wickmann, S.. Rwth Aachen University; AlemaniaFil: Wiebe, K.. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Wiebusch, C. H.. Rwth Aachen University; AlemaniaFil: Wille, L.. University of Wisconsin; Estados UnidosFil: Williams, D. R.. University of Alabama at Birmingahm; Estados UnidosFil: Wills, L.. Drexel University; Estados UnidosFil: Wissing, H.. University of Maryland; Estados UnidosFil: Wolf, M.. Stockholms Universitet; SueciaFil: Wood, T. R.. University of Alberta; CanadĂĄFil: Woschnagg, K.. University of California at Berkeley; Estados UnidosFil: Xu, D. L.. University of Wisconsin; Estados UnidosFil: Xu, X. W.. Southern University; Estados UnidosFil: Xu, Y.. Stony Brook University; Estados UnidosFil: Yanez, J. P.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Yodh, G.. University of California at Irvine; Estados UnidosFil: Yoshida, S.. Chiba University; JapĂłnFil: Zoll, M.. Stockholms Universitet; Sueci

    The AMANDA Neutrino Telescope: Principle of Operation and First Results

    Get PDF
    AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.Comment: 36 pages, 23 figures, submitted to Astroparticle Physic

    Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis

    Get PDF
    Herpesviruses encode conserved protein kinases (CHPKs) to stimulate phosphorylation-sensitive processes during infection. How CHPKs bind to cellular factors and how this impacts their regulatory functions is poorly understood. Here, we use quantitative proteomics to determine cellular interaction partners of human herpesvirus (HHV) CHPKs. We find that CHPKs can target key regulators of transcription and replication. The interaction with Cyclin A and associated factors is identified as a signature of ÎČ-herpesvirus kinases. Cyclin A is recruited via RXL motifs that overlap with nuclear localization signals (NLS) in the non-catalytic N termini. This architecture is conserved in HHV6, HHV7 and rodent cytomegaloviruses. Cyclin A binding competes with NLS function, enabling dynamic changes in CHPK localization and substrate phosphorylation. The cytomegalovirus kinase M97 sequesters Cyclin A in the cytosol, which is essential for viral inhibition of cellular replication. Our data highlight a fine-tuned and physiologically important interplay between a cellular cyclin and viral kinases

    Electroweak Precision Observables within a Fourth Generation Model with General Flavour Structure

    Full text link
    We calculate the contributions to electroweak precision observables (EWPOs) due to a fourth generation of fermions with the most general (quark-)flavour structure (but assuming Dirac neutrinos and a trivial flavour structure in the lepton sector). The new-physics contributions to the EWPOs are calculated at one-loop order using automated tools (FeynArts/FormCalc). No further approximations are made in our calculation. We discuss the size of non-oblique contributions arising from Z--quark--anti-quark vertex corrections and the dependence of the EWPOs on all CKM mixing angles involving the fourth generation. We find that the electroweak precision observables are sensitive to two of the fourth-generation mixing angles and that the corresponding constraints on these angles are competitive with those obtained from flavour physics. For non-trivial 4x4 flavour structures, the non-oblique contributions lead to relative corrections of several permille and should be included in a global fit
    • 

    corecore