86 research outputs found
Saleability of Anti-malarials in Private Drug Shops in Muheza, Tanzania: A Baseline study in an era of assumed Artemisinin Ccombination Therapy (ACT).
Artemether-lumefantrine (ALu) replaced sulphadoxine-pymimethamine (SP) as the official first-line anti-malarial in Tanzania in November 2006. So far, artemisinin combination therapy (ACT) is contra-indicated during pregnancy by the national malaria treatment guidelines, and pregnant women depend on SP for Intermittent Preventive Treatment (IPTp) during pregnancy. SP is still being dispensed by private drug stores, but it is unknown to which extent. If significant, it may undermine its official use for IPTp through induction of resistance. The main study objective was to perform a baseline study of the private market for anti-malarials in Muheza town, an area with widespread anti-malarial drug resistance, prior to the implementation of a provider training and accreditation programme that will allow accredited drug shops to sell subsidized ALu. All drug shops selling prescription-only anti-malarials, in Muheza town, Tanga Region voluntarily participated from July to December 2009. Qualitative in-depth interviews were conducted with owners or shopkeepers on saleability of anti-malarials, and structured questionnaires provided quantitative data on drugs sales volume. All surveyed drug shops illicitly sold SP and quinine (QN), and legally amodiaquine (AQ). Calculated monthly sale was 4,041 doses, in a town with a population of 15,000 people. Local brands of SP accounted for 74% of sales volume, compared to AQ (13%), QN (11%) and ACT (2%). In community practice, the saleability of ACT was negligible. SP was best-selling, and use was not reserved for IPTp, as stipulated in the national anti-malarial policy. It is a major reason for concern that such drug-pressure in the community equals de facto intermittent presumptive treatment. In an area where SP drug resistance remains high, unregulated SP dispensing to people other than pregnant women runs the risk of eventually jeopardizing the effectiveness of the IPTp strategy. Further studies are recommended to find out barriers for ACT utilization and preference for self-medication and to train private drug dispensers
What happened to anti-malarial markets after the Affordable Medicines Facility-malaria pilot? Trends in ACT availability, price and market share from five African countries under continuation of the private sector co-payment mechanism
BACKGROUND: The private sector supplies anti-malarial treatment for large proportions of patients in sub-Saharan Africa. Following the large-scale piloting of the Affordable Medicines Facility-malaria (AMFm) from 2010 to 2011, a private sector co-payment mechanism (CPM) provided continuation of private sector subsidies for quality-assured artemisinin combination therapies (QAACT). This article analyses for the first time the extent to which improvements in private sector QAACT supply and distribution observed during the AMFm were maintained or intensified during continuation of the CPM through 2015 in Kenya, Madagascar, Nigeria, Tanzania and Uganda using repeat cross-sectional outlet survey data. RESULTS: QAACT market share in all five countries increased during the AMFm period (p < 0.001). According to the data from the last ACTwatch survey round, in all study countries except Madagascar, AMFm levels of private sector QAACT availability were maintained or improved. In 2014/15, private sector QAACT availability was greater than 70% in Nigeria (84.3%), Kenya (70.5%), Tanzania (83.0%) and Uganda (77.1%), but only 11.2% in Madagascar. QAACT market share was maintained or improved post-AMFm in Nigeria, Tanzania and Uganda, but statistically significant declines were observed in Kenya and Madagascar. In 2014/5, QAACT market share was highest in Kenya and Uganda (48.2 and 47.5%, respectively) followed by Tanzania (39.2%), Nigeria (35.0%), and Madagascar (7.0%). Four of the five countries experienced significant decreases in median QAACT price during the AMFm period. Private sector QAACT prices were maintained or further reduced in Tanzania, Nigeria and Uganda, but prices increased significantly in Kenya and Madagascar. SP prices were consistently lower than those of QAACT in the AMFm period, with the exception of Kenya and Tanzania in 2011, where they were equal. In 2014/5 QAACT remained two to three times more expensive than the most popular non-artemisinin therapy in all countries except Tanzania. CONCLUSIONS: Results suggest that a private sector co-payment mechanism for QAACT implemented at national scale for 5 years was associated with positive and sustained improvements in QAACT availability, price and market share in Nigeria, Tanzania and Uganda, with more mixed results in Kenya, and few improvements in Madagascar. The subsidy mechanism as implemented over time across countries was not sufficient on its own to achieve optimal QAACT uptake. Supporting interventions to address continued availability and distribution of non-artemisinin therapies, and to create demand for QAACT among providers and consumers need to be effectively implemented to realize the full potential of this subsidy mechanism. Furthermore, there is need for comprehensive market assessments to identify contemporary market barriers to high coverage with both confirmatory testing and appropriate treatment
Quality of care for the treatment for uncomplicated malaria in South-East Nigeria: how important is socioeconomic status?
Introduction: Ensuring equitable coverage of appropriate malaria treatment remains a high priority for the Nigerian government. This study examines the health seeking behaviour, patient-provider interaction and quality of care received by febrile patients of different socio-economic status (SES) groups. Methods: A total of 1642 febrile patients and caregivers exiting public health centres, pharmacies and patent medicine dealers were surveyed in Enugu state, South-East Nigeria to obtain information on treatment seeking behaviour, patient-provider interactions and treatment received. Socioeconomic status was estimated for each patient using exit survey data on household assets in combination with asset ownership data from the 2008 Nigeria Demographic and Health Survey. Results: Among the poorest SES group, 29% sought treatment at public health centres, 13% at pharmacies and 58% at patent medicine dealers (p < 0.01). Very few of those in the richest SES group used public health centres (4%) instead choosing to go to pharmacies (44%) and patent medicine dealers (52%, p < 0.001). During consultations with a healthcare provider, the poorest compared to the richest were significantly more likely to discuss symptoms with the provider, be physically examined and rely on providers for diagnosis and treatment rather than request a specific medicine. Those from the poorest SES group were however, least likely to request or to receive an antimalarial (p < 0.001). The use of artemisinin combination therapy (ACT), the recommended treatment for uncomplicated malaria, was low across all SES groups. Conclusions: The quality of malaria treatment is sub-optimal for all febrile patients. Having greater interaction with the provider also did not translate to better quality care for the poor. The poor face a number of significant barriers to accessing quality treatment especially in relation to treatment seeking behaviour and type of treatment received. Strategies to address these inequities are fundamental to achieving universal coverage of effective malaria treatment and ensuring that the most vulnerable people are not left behind
Anti-malarial landscape in Myanmar: results from a nationally representative survey among community health workers and the private sector outlets in 2015/2016
Abstract Background In 2015/2016, an ACTwatch outlet survey was implemented to assess the anti-malarial and malaria testing landscape in Myanmar across four domains (Eastern, Central, Coastal, Western regions). Indicators provide an important benchmark to guide Myanmar’s new National Strategic Plan to eliminate malaria by 2030. Methods This was a cross-sectional survey, which employed stratified cluster-random sampling across four regions in Myanmar. A census of community health workers (CHWs) and private outlets with potential to distribute malaria testing and/or treatment was conducted. An audit was completed for all anti-malarials, malaria rapid diagnostic tests. Results A total of 28,664 outlets were approached and 4416 met the screening criteria. The anti-malarial market composition comprised CHWs (41.5%), general retailers (27.9%), itinerant drug vendors (11.8%), pharmacies (10.9%), and private for-profit facilities (7.9%). Availability of different anti-malarials and diagnostic testing among anti-malarial-stocking CHWs was as follows: artemisinin-based combination therapy (ACT) (81.3%), chloroquine (67.0%), confirmatory malaria test (77.7%). Less than half of the anti-malarial-stocking private sector had first-line treatment in stock: ACT (41.7%) chloroquine (41.8%), and malaria diagnostic testing was rare (15.4%). Oral artemisinin monotherapy (AMT) was available in 27.7% of private sector outlets (Western, 54.1%; Central, 31.4%; Eastern; 25.0%, Coastal; 15.4%). The private-sector anti-malarial market share comprised ACT (44.0%), chloroquine (26.6%), and oral AMT (19.6%). Among CHW the market share was ACT (71.6%), chloroquine (22.3%); oral AMT (3.8%). More than half of CHWs could correctly state the national first-line treatment for uncomplicated falciparum and vivax malaria (59.2 and 56.9%, respectively) compared to the private sector (15.8 and 13.2%, respectively). Indicators on support and engagement were as follows for CHWs: reportedly received training on malaria diagnosis (60.7%) or national malaria treatment guidelines (59.6%), received a supervisory or regulatory visit within 12 months (39.1%), kept records on number of patients tested or treated for malaria (77.3%). These indicators were less than 20% across the private sector. Conclusion CHWs have a strong foundation for achieving malaria goals and their scale-up is merited, however gaps in malaria commodities and supplies must be addressed. Intensified private sector strategies are urgently needed and must be scaled up to improve access and coverage of first-line treatments and malaria diagnosis, and remove oral AMT from the market place. Future policies and interventions on malaria control and elimination in Myanmar should take these findings into consideration across all phases of implementation
Physical and chemical stability of expired fixed dose combination artemether-lumefantrine in uncontrolled tropical conditions
<p>Abstract</p> <p>Background</p> <p>New artemisinin combination therapies pose difficulties of implementation in developing and tropical settings because they have a short shelf-life (two years) relative to the medicines they replace. This limits the reliability and cost of treatment, and the acceptability of this treatment to health care workers. A multi-pronged investigation was made into the chemical and physical stability of fixed dose combination artemether-lumefantrine (FDC-ALU) stored under heterogeneous, uncontrolled African conditions, to probe if a shelf-life extension might be possible.</p> <p>Methods</p> <p>Seventy samples of expired FDC-ALU were collected from private pharmacies and malaria researchers in seven African countries. The samples were subjected to thin-layer chromatography (TLC), disintegration testing, and near infrared Raman spectrometry for ascertainment of active ingredients, tablet integrity, and chemical degradation of the tablet formulation including both active ingredients and excipients.</p> <p>Results</p> <p>Seventy samples of FDC-ALU were tested in July 2008, between one and 58 months post-expiry. 68 of 70 (97%) samples passed TLC, disintegration and Raman spectrometry testing, including eight samples that were post-expiry by 20 months or longer. A weak linear association (R<sup>2 </sup>= 0.33) was observed between the age of samples and their state of degradation relative to brand-identical samples on Raman spectrometry. Sixty-eight samples were retested in February 2009 using Raman spectrometry, between eight and 65 months post-expiry. 66 of 68 (97%) samples passed Raman spectrometry retesting. An unexpected observation about African drug logistics was made in three batches of FDC-ALU, which had been sold into the public sector at concessional pricing in accordance with a World Health Organization (WHO) agreement, and which were illegally diverted to the private sector where they were sold for profit.</p> <p>Conclusion</p> <p>The data indicate that FDC-ALU is chemically and physically stable well beyond its stated shelf-life in uncontrolled, tropical conditions. While these data are not themselves sufficient, it is strongly suggested that a re-evaluation of the two-year shelf-life by drug regulatory authorities is warranted.</p
Taking stock: provider prescribing practices in the presence and absence of ACT stock
BACKGROUND: Globally, the monitoring of prompt and effective treatment for malaria with artemisinin combination therapy (ACT) is conducted largely through household surveys. This measure; however, provides no information on case management processes at the health facility level. The aim of this review was to assess evidence from health facility surveys on malaria prescribing practices using ACT, in the presence and absence of ACT stock, at time and place where treatment was sought. METHODS: A systematic search of published literature was conducted. Findings were collated and data extracted on proportion of patients prescribed ACT and alternative anti-malarials in the presence and absence of ACT stock. RESULTS: Of the 14 studies identified in which ACT prescription for uncomplicated malaria in the public sector was evaluated, just six, from three countries (Kenya, Uganda and Zambia), reported this in the context of ACT stock. Comparing facilities with ACT stock to facilities without stock (i) ACT prescribing was significantly higher in all six studies, increasing by a range of 21.3% in children < 5 yrs weighing ≥ 5 kg (p < 0.001; Kenya 2006) to 51.7% in children ≥ 10 kg (p < 0.001; Zambia 2006); (ii) SP prescribing decreased significantly in five studies, by a range of 14.4% (p < 0.001; Kenya 2006), to 46.3% (p < 0.001; Zambia 2006); (iii) Where quinine was a reported alternative, prescriptions decreased in five of the six studies by 0.1% (p = 1.0, Kenya 2010) to 10.2% (p < 0.001; Zambia 2006). At facilities with no ACT stock on the survey day, the proportion of febrile patients prescribed ACT was < 10% in five of the nine target groups included in the six studies, with the proportion prescribed ACT ranging from 0 to 28.4% (Uganda 2007). CONCLUSIONS: Prescriber practices vary based on ACT availability. Although ACT prescriptions increased and alternative anti-malarials prescriptions decreased in the presence of ACT stock, ACT was prescribed in the absence, and alternative anti-malarials were prescribed in the presence of, ACT. Presence of stock alone does not ensure that treatment guidelines are followed. More health facility surveys, together with qualitative research, are needed to understand the role of ACT stock-outs on provider prescribing behaviours and preferences
A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya
<p>Abstract</p> <p>Background</p> <p>Artemether/lumefantrine (AL) has been adopted as the treatment of choice for uncomplicated malaria in Kenya and other countries in the region. Six-dose artemether/lumefantrine tablets are highly effective and safe for the treatment of infants and children weighing between five and 25 kg with uncomplicated <it>Plasmodium falciparum </it>malaria. However, oral paediatric formulations are urgently needed, as the tablets are difficult to administer to young children, who cannot swallow whole tablets or tolerate the bitter taste of the crushed tablets.</p> <p>Methods</p> <p>A randomized, controlled, open-label trial was conducted comparing day 28 PCR corrected cure-rates in 245 children aged 6–59 months, treated over three days with either six-dose of artemether/lumefantrine tablets (Coartem<sup>®</sup>) or three-dose of artemether/lumefantrine suspension (Co-artesiane<sup>®</sup>) for uncomplicated falciparum malaria in western Kenya. The children were followed-up with clinical, parasitological and haematological evaluations over 28 days.</p> <p>Results</p> <p>Ninety three percent (124/133) and 90% (121/134) children in the AL tablets and AL suspension arms respectively completed followed up. A per protocol analysis revealed a PCR-corrected parasitological cure rate of 96.0% at Day 28 in the AL tablets group and 93.4% in the AL suspension group, p = 0.40. Both drugs effectively cleared gametocytes and were well tolerated, with no difference in the overall incidence of adverse events.</p> <p>Conclusion</p> <p>The once daily three-dose of artemether-lumefantrine suspension (Co-artesiane<sup>®</sup>) was not superior to six-dose artemether-lumefantrine tablets (Coartem<sup>®</sup>) for the treatment of uncomplicated malaria in children below five years of age in western Kenya.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00529867</p
Single-dose liposomal amphotericin B (AmBisome®) for the treatment of Visceral Leishmaniasis in East Africa: study protocol for a randomized controlled trial
BACKGROUND: AmBisome® is an efficacious, safe anti-leishmanial treatment. There is growing interest in its use, either as a single dose or in combination treatments. In East Africa, the minimum optimal single-dosage has not been identified. METHODS/DESIGN: An open-label, 2-arm, non-inferiority, multi-centre randomised controlled trial is being conducted to determine the optimal single-dose treatment with AmBisome®.Patients in the single-dose arm will receive one infusion on day 1, at a dose depending on body weight. For the first group of patients entered to the trial, the dose will be 7.5 mg/kg, but if this dose is found to be ineffective then in subsequent patient series the dose will be escalated progressively to 10, 12.5 and 15 mg/kg. Patients in the reference arm will receive a multi-dose regimen of AmBisome® (3 mg/kg/day on days 1-5, 14 and 21: total dose 21 mg/kg). Patients will be hospitalised for approximately one month after the start of treatment and then followed up at three and six months. The primary endpoint is the status of patients six months after treatment. A secondary endpoint is assessment at day 30. Treatment success is determined as the absence of parasites on microscopy samples taken from bone marrow, lymph node or splenic aspirates. Interim analyses to assess the comparative efficacy of the single dose are planned after recruitment of 20 and 40 patients per arm. The final non-inferiority analysis will include 120 patients per arm, to determine if the single-dose efficacy 6 months after treatment is not more than 10% inferior to the multi-dose. DISCUSSION: An effective, safe single-dose treatment would reduce hospitalization and treatment costs. Results will inform the design of combination treatment studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT00832208
Monitoring fever treatment behaviour and equitable access to effective medicines in the context of initiatives to improve ACT access: baseline results and implications for programming in six African countries
BACKGROUND: Access to artemisinin-based combination therapy (ACT) remains limited in high malaria-burden countries, and there are concerns that the poorest people are particularly disadvantaged. This paper presents new evidence on household treatment-seeking behaviour in six African countries. These data provide a baseline for monitoring interventions to increase ACT coverage, such as the Affordable Medicines Facility for malaria (AMFm). METHODS: Nationally representative household surveys were conducted in Benin, the Democratic Republic of Congo (DRC), Madagascar, Nigeria, Uganda and Zambia between 2008 and 2010. Caregivers responded to questions about management of recent fevers in children under five. Treatment indicators were tabulated across countries, and differences in case management provided by the public versus private sector were examined using chi-square tests. Logistic regression was used to test for association between socioeconomic status and 1) malaria blood testing, and 2) ACT treatment. RESULTS: Fever treatment with an ACT is low in Benin (10%), the DRC (5%), Madagascar (3%) and Nigeria (5%), but higher in Uganda (21%) and Zambia (21%). The wealthiest children are significantly more likely to receive ACT compared to the poorest children in Benin (OR = 2.68, 95% CI = 1.12-6.42); the DRC (OR = 2.18, 95% CI = 1.12-4.24); Madagascar (OR = 5.37, 95% CI = 1.58-18.24); and Nigeria (OR = 6.59, 95% CI = 2.73-15.89). Most caregivers seek treatment outside of the home, and private sector outlets are commonly the sole external source of treatment (except in Zambia). However, children treated in the public sector are significantly more likely to receive ACT treatment than those treated in the private sector (except in Madagascar). Nonetheless, levels of testing and ACT treatment in the public sector are low. Few caregivers name the national first-line drug as most effective for treating malaria in Madagascar (2%), the DRC (2%), Nigeria (4%) and Benin (10%). Awareness is higher in Zambia (49%) and Uganda (33%). CONCLUSIONS: Levels of effective fever treatment are low and inequitable in many contexts. The private sector is frequently accessed however case management practices are relatively poor in comparison with the public sector. Supporting interventions to inform caregiver demand for ACT and to improve provider behaviour in both the public and private sectors are needed to achieve maximum gains in the context of improved access to effective treatment
The quest for universal access to effective malaria treatment: how can the AMFm contribute?
Access to quality assured artemisinin-based combination therapy (ACT) has remained very low in most malaria endemic countries. A number of reasons, including unaffordable prices, have contributed to the low accessibility to these life-saving medicines. The Affordable Medicines Facility-Malaria (AMFm) is a mechanism to increase access to quality assured ACT. The AMFm will use price signals and a combination of public and private sector channels to achieve multiple public health objectives: replacing older and increasingly ineffective anti-malarial medicines, such as chloroquine and sulphadoxine-pyrimethamine with ACT, displacing oral artemisinin monotherapies from the market, and prolonging the lifespan of ACT by reducing the likelihood of resistance to artemisinin
- …
