696 research outputs found

    Self-interacting dark matter and Higgs bosons in the SU(3)_C x SU(3)_L x U(1)_N model with right-handed neutrinos

    Full text link
    We investigate the possibility that dark matter could be made from CP-even and CP- odd Higgs bosons in the SU(3)_C X SU(3)_L X U(1)_N (3-3-1) model with right-handed neutrinos. This self-interacting dark matters are stable without imposing of new symmetry and should be weak-interacting.Comment: 7 pages, Latex, To appear in Europhys. Let

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    Porphyrin Layers at Cu/Au(111)–Electrolyte Interfaces: In Situ EC-STM Study

    Get PDF
    The coadsorption of porphyrin molecules (TMPyP: tetra(N-methyl-4-pyridyl)-porphyrin), sulfate anions and copper on a Au(111) electrode was investigated by the use of cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy. With decreasing electrode potential the following sequence of surface phases was found: (I) an ordered (3×7)R19.1SO42\left( {\sqrt 3 \times \sqrt 7 } \right)R19.1^\circ - {\text{S}}{{\text{O}}_4}^{{2 - }} structure on the unreconstructed Au(111)-(1 × 1) surface; (II) a disordered SO42−-layer on the still unreconstructed Au(111)-(1 × 1); (III) a (3×3)R30\left( {\sqrt 3 \times \sqrt 3 } \right)R30^\circ coadsorption structure of 2/3 ML Cu and 1/3 ML SO42−; (IV) a completed 1 ML Cu covered by a layer of mobile, i.e. not imaged, SO42− anions, moreover, a coadsorption layer of disordered porphyrin molecules and still mobile SO42− anions; (V) overpotentially deposited Cu-multilayers terminated by the well known Moire-type modulated (3×7)R19.1SO42\left( {\sqrt 3 \times \sqrt 7 } \right)R19.1^\circ - {\text{S}}{{\text{O}}_4}^{{2 - }} structure (similar to bulk Cu(111)) and covered by a dense layer of flat lying TMPyP molecules showing a growing square as well as hexagonally ordered arrangement, and at even more negative potential values and low Cu concentrations in the solution (VI) a pseudomorphic underpotentially deposited Cu-monolayer covered by a (3×7)R19.1SO42\left( {\sqrt 3 \times \sqrt 7 } \right)R19.1^\circ - {\text{S}}{{\text{O}}_4}^{{2 - }} layer and a dense, ordered porphyrin layer ontop. The formation of the various phases is driven by the potential dependent surface charge density and the resultant electrostatic interaction with the respective ions. A severe imbalance between the copper deposition and desorption current in the CV spectra suggests also the formation of CuTMPyP-metalloporphyrin on the surface which diffuses into the bulk solution

    Halo detection via large-scale Bayesian inference

    Get PDF
    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect halos of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HADES, and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to connect the inferred density field to the properties of dark matter halos. To demonstrate the capability of our approach we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful of detection of halos in the mock catalogue increases as a function of the signal-to-noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.Comment: 17 pages, 13 figures. Accepted for publication in MNRAS following moderate correction

    Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps

    Get PDF
    We apply a previously developed Gibbs sampling framework to the foreground corrected 3-yr WMAP polarization data and compute the power spectrum and residual foreground template amplitude posterior distributions. We first analyze the co-added Q- and V-band data, and compare our results to the likelihood code published by the WMAP team. We find good agreement, and thus verify the numerics and data processing steps of both approaches. However, we also analyze the Q- and V-bands separately, allowing for non-zero EB cross-correlations and including two individual foreground template amplitudes tracing synchrotron and dust emission. In these analyses, we find tentative evidence of systematics: The foreground tracers correlate with each of the Q- and V-band sky maps individually, although not with the co-added QV map; there is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and finally, when relaxing the constraints on EB and BB, noticeable differences are observed between the marginalized band powers in the Q- and V-bands. Further studies of these features are imperative, given the importance of the low-l EE spectrum on the optical depth of reionization tau and the spectral index of scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
    corecore