36 research outputs found
Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease
Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine
An Evaluation of the COVID-19 Pandemic and Perceived Social Distancing Policies in Relation to Planning, Selecting, and Preparing Healthy Meals: An Observational Study in 38 Countries Worldwide
Objectives: To examine changes in planning, selecting, and preparing healthy foods in relation to personal factors (time, money, stress) and social distancing policies during the COVID-19 crisis. Methods: Using cross-sectional online surveys collected in 38 countries worldwide in April-June 2020 (N = 37,207, Mage 36.7 SD 14.8, 77% women), we compared changes in food literacy behaviors to changes in personal factors and social distancing policies, using hierarchical multiple regression analyses controlling for sociodemographic variables. Results: Increases in planning (4.7 SD 1.3, 4.9 SD 1.3), selecting (3.6 SD 1.7, 3.7 SD 1.7), and preparing (4.6 SD 1.2, 4.7 SD 1.3) healthy foods were found for women and men, and positively related to perceived time availability and stay-at-home policies. Psychological distress was a barrier for women, and an enabler for men. Financial stress was a barrier and enabler depending on various sociodemographic variables (all p < 0.01). Conclusion: Stay-at-home policies and feelings of having more time during COVID-19 seem to have improved food literacy. Stress and other social distancing policies relate to food literacy in more complex ways, highlighting the necessity of a health equity lens. Copyright 2021 De Backer, Teunissen, Cuykx, Decorte, Pabian, Gerritsen, Matthys, Al Sabbah, Van Royen and the Corona Cooking Survey Study Group.This research was funded by the Research Foundation Flanders (G047518N) and Flanders Innovation and Entrepreneurship (HBC.2018.0397). These funding sources had no role in the design of the study, the analysis and interpretation of the data or the writing of, nor the decision to publish the manuscript.Scopu
Nhej1 Deficiency Causes Abnormal Development of the Cerebral Cortex
International audienceDNA double-strand breaks (DSBs) frequently occur in rapidly dividing cells such as proliferating progenitors during central nervous system development. If they cannot be repaired, these lesions will cause cell death. The non-homologous end joining (NHEJ) DNA repair pathway is the only pathway available to repair DSBs in post-mitotic neurons. The non-homologous end joining factor 1 (Nhej1) protein is a key component of the NHEJ pathway. Nhej1 interacts with Xrcc4 and Lig4 to repair DSBs. Loss of function of Xrcc4 or Lig4 is embryonic lethal in the mouse while the loss of Nhej1 is not. Surprisingly, the brains of Nhej1-deficient mice appear to be normal although NHEJ1 deficiency in humans causes severe neurological dysfunction and microcephaly. Here, we studied the consequences of Nhej1 dysfunction for the development of the cerebral cortex using in utero electroporation of inactivating small hairpin RNAs (shRNAs) in the developing rat brain. We found that decreasing Nhej1 expression during neuronal migration phases causes severe neuronal migration defects visualized at embryonic stages by an accumulation of heterotopic neurons in the intermediate zone. Knocked-down cells die by 7 days after birth and the brain regions where RNA interference was achieved are structurally abnormal, suffering from a reduction of the width of the external cortical layers. These results indicate that the Nhej1 protein is necessary for proper rat cortical development. Neurons unable to properly repair DNA DSBs are unable to reach their final destination during the development and undergo apoptosis, leading to an abnormal cortical development
Deletion of YWHAE in a patient with periventricular heterotopias and pronounced corpus callosum hypoplasia
1468-6244 (Electronic) 0022-2593 (Linking) Journal Article Research Support, Non-U.S. Gov'tBACKGROUND: Malformations of cortical development are not rare and cause a wide spectrum of neurological diseases based on the affected region in the cerebral cortex. A significant proportion of these malformations could have a genetic basis. However, genetic studies are limited because most cases are sporadic and mendelian forms are rare. METHODS: In order to identify new genetic causes in patients presenting defects of cortical organisation, array based comparative genomic hybridisation was performed in a cohort of 100 sporadic cases with various types of cortical malformations in search for inframicroscopic chromosomal rearrangements. RESULTS: In one patient presenting with periventricular nodular heterotopias and pronounced corpus callosum hypoplasia, a small (400 kb) 17p13.3 deletion involving the YWHAE gene was identified. It is shown that YWHAE is the only brain expressed gene in the deleted region and that the other genes in the interval are unlikely to contribute to the brain malformation phenotype of this patient. CONCLUSION: Most 17p13.3 deletions reported to date are large, such as the deletions causing Miller-Dieker syndrome, and involve several genes implicated in various steps of brain development. Haploinsufficiency of the mouse orthologue of YWHAE causes a defect of neuronal migration. However, the human counterpart of this phenotype was not known. The case described here represents the smallest reported deletion involving the YWHAE gene and could represent the human counterpart of the abnormal cortical organisation phenotype presented by the Ywhae heterozygous knockout mouse
Olesoxime favors oligodendrocyte differentiation through a functional interplay between mitochondria and microtubules
International audienceMultiple sclerosis (MS) is a neurodegenerative disease characterized by episodes of immune attacks and oligodendrocyte death leading to demyelination and progressive functional deficits. New therapeutic strategies are needed to stimulate the spontaneous regenerative process observed in some patients. Spontaneous myelin repair relies on the mobilization and differentiation of endogenous oligodendrocyte progenitors at the lesion site. Olesoxime, a cholesterol-like compound, has been shown to favor oligodendrocyte maturation in culture and promote myelin regeneration in rodents. Here, we study the mode of action of this compound and show that it binds to oligodendrocyte mitochondria, leading to their hyperfilamentation. This is accompanied by a reduction of basal superoxide levels, and accumulation of End Binding Protein 1 (EB1) at growing ends of microtubules. In parallel, we demonstrate that Reactive Oxygen Species (ROS) scavengers also promote oligodendrocyte differentiation, together with increasing mitochondrial filamentation and EB1-dependent microtubule polymerization. Altogether, our data uncover the mechanisms by which olesoxime promotes oligodendrocyte maturation. They also reveal that a bidirectional relationship between mitochondria hyperfilamentation and ROS level modulation controls oligodendrocyte maturation. This study identifies new cellular mechanisms to target for the development of regenerative treatments for MS
Olesoxime favors oligodendrocyte differentiation through a functional interplay between mitochondria and microtubules
International audienceMultiple sclerosis (MS) is a neurodegenerative disease characterized by episodes of immune attacks and oligodendrocyte death leading to demyelination and progressive functional deficits. New therapeutic strategies are needed to stimulate the spontaneous regenerative process observed in some patients. Spontaneous myelin repair relies on the mobilization and differentiation of endogenous oligodendrocyte progenitors at the lesion site. Olesoxime, a cholesterol-like compound, has been shown to favor oligodendrocyte maturation in culture and promote myelin regeneration in rodents. Here, we study the mode of action of this compound and show that it binds to oligodendrocyte mitochondria, leading to their hyperfilamentation. This is accompanied by a reduction of basal superoxide levels, and accumulation of End Binding Protein 1 (EB1) at growing ends of microtubules. In parallel, we demonstrate that Reactive Oxygen Species (ROS) scavengers also promote oligodendrocyte differentiation, together with increasing mitochondrial filamentation and EB1-dependent microtubule polymerization. Altogether, our data uncover the mechanisms by which olesoxime promotes oligodendrocyte maturation. They also reveal that a bidirectional relationship between mitochondria hyperfilamentation and ROS level modulation controls oligodendrocyte maturation. This study identifies new cellular mechanisms to target for the development of regenerative treatments for MS