440 research outputs found

    The hereditary angioedema burden of illness study in Europe (HAE-BOIS-Europe) : background and methodology

    Get PDF
    Background: Hereditary angioedema (HAE) is a rare but serious disease marked by swelling attacks in the extremities, face, trunk, airway, or abdominal areas that can be spontaneous or the result of trauma and other triggers. It can be life-threatening due to the risk of asphyxiation. While there have been major advancements in our understanding of the immunogenetics of HAE, there are significant gaps in the literature regarding understanding of the humanistic and economic impact of the disease, particularly in Europe. The purpose of the HAE Burden of Illness Study-Europe (HAE-BOIS-Europe), the development and methodology of which is described here, is to better understand the management and impact of HAE from the patient perspective in Europe. Methods/Design: This is a cross-sectional study in which retrospective data were also collected being conducted in Denmark, Germany and Spain. The study is open to patients ages 12 and older with a diagnosis of HAE-I or HAE-II. Data collection includes: (i) a survey on individuals’ health care resource use, direct and indirect medical costs, impact on work and school, treatment satisfaction, and emotional functioning (via the Hospital Anxiety and Depression Scale); and (ii) one-on-one interviews to collect detailed descriptive data and patient testimonials on the impact of HAE on patients’ health-related quality of life. Discussion: The present manuscript describes the development and plans for implementing a multi-country European study with the aim of characterizing the humanistic and economic burden of HAE from the patient perspective. This study will help raise awareness of HAE as a rare but debilitating condition with wide-ranging impacts

    Using GIS for spatial analysis of rectal lesions in the human body

    Get PDF
    Abstract Background Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Results Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. Conclusion This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process. </p

    Kick Stability Analysis of the LHC Inflectors

    Get PDF
    Two sets of four LHC inflector magnet systems must produce a kick of 1.36 Tm each with a duration of 6.5 µs, a rise time of 750 ns, and an overall stability of ± 0.5%. The electrical circuit of the complete system, including all known stray quantities, has been simulated with PSpice. Many stray elements were determined from Opera2D simulations which included eddy-currents. 3D analyses have also been carried out for the kicker magnet using the electromagnetic analysis code Opera3D. Equivalent circuits which simulate the frequency dependence of inductance and resistance of the Pulse Forming Network (PFN) have been derived. The dimensions of the PFN coil have been selected to give the correct pulse response. The end cells of the PFN have also been optimised. The discharge stability of various PFN capacitors has been measured. This paper presents the results of both the analyses and measurements

    High voltage measurements on a prototype PFN for the LHC injection kickers

    Get PDF
    Two LHC injection kicker magnet systems must produce a kick of 1.3 T.m each with a flattop duration of 4.25 mu s or 6.5 mu s, a rise time of 900 ns, and a fall time of 3 mu s. The ripple in the field must be less than +or-0.5The electrical circuit of the complete system has been simulated with PSpice. The model includes a 66 kV resonant charging power supply (RCPS), a 5 Omega pulse forming network (PFN), a terminated 5 Omega kicker magnet, and all known parasitic quantities. Component selection for the PEN was made on the basis of models in which a theoretical field ripple of less than +or-0.1as attained. A prototype 66 kV RCPS was built at TRIUMF and shipped to CERN. A prototype 5 Omega system including a PFN, thyratron switches, and terminating resistors, was built at CERN. The system (without a kicker magnet) was assembled as designed without trimming of any PFN component values. The PFN was charged to 60 kV via the RCPS operating at 0.1 Hz. The thyratron timing was adjusted to provide a 30 kV, 5.5 mu s duration pulse on a 5 Omega terminating resistor. Measurement data is presented for the prototype PFN, connected to resistive terminators. A procedure has been developed for compensating the probe and oscilloscope amplifier calibration errors. The top of the 30 kV pulse is flat to +or-0.3after an initial oscillation of 600 ns total duration. The post-pulse period is flat to within +or-0.1after approximately 600 ns from the bottom of the falling edge of the pulse. A calculation was performed in which a measured 27.5 kV pulse with a 5.5 mu s flattop was fed into a PSpice model of a kicker magnet with a 690 ns delay length. The resultant predicted kick rise time, from 0.2to 99.8, is 834 ns and the fall time 2.94 mu s, for a field pulse with a flattop of 4.69 mu s and a ripple of less than +or-0.2(12 refs)

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007
    • …
    corecore