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ABSTRACT

The accurate detection and characterization of
non/inearities associated with damage in structural
systems is an area of vibration analysis that is being widely
researched. In this paper, nonlinear behavior is
considered a potential indicator of damage. Most
conventional damage detection methods, such as those
based on resonant frequencies and mode shapes, do not
accurately identify the location and extent of nonlinearities
present in a given structural system. As an extension of
previous work at .LANL, an efforl is made to validate a
damage detection method proposed by Adams [1]. This
method states that the frequency response function (FRF)
matrix obtained from a low-level vibration test
approximates the underlying linear FRF matrix of the
system. The nonlinear systems’ responses to high level
excitation are combined with the linear FRF in a classic
feedback loop to obtain the contributions of nonlinear
internal forces. The temporal and spatial characteristics of
the nonlineafities present in a structural system are
identified. An 8-DOF system is used as a test case to
validate the aforementioned method. Results of the tests
and important issues concerning the method are
presented.

NOMENCLATURE

The following are adapted from [1]:

{x{@))N,,., 1 Linear Fourier spectrum of the output vector
of a nonlinear system

N<, Number of outputs
(F(0))M s t Fourier spectrum of the input vector
[1] The identity matrix
{~L(@)]No., JVb Frequency response function matrix of a

linear system

XjJU)

XNL(CI.))

lBL(cD)lNo., ~,,

[.rB.i(d]No x No

[@ni(@)]No.r No

{Bni(4)No.x No

P!{@)

[Ed @Nor No

DOF
FRF

[.A’M(Lv}IN,,., N,,

[.,H(41N0., N,,

Scalar nonlinear function of the outputs for
nonlinear element i
Fourier spectrum of the outputs from the
nonlinear system
Impedance matrix of a linear or linearized
system
Frequency response (projection) matrix
between the outputs and Xnkm) associated
with the nonlinear element i
Frequency response (projection) matrix
between the external inputs and Xn,{@
associated with the nonlinear element i
Vector of impedance with nonlinear
coefficient and nonlinear spectral function
factored out to yield entries of 1 and –1 only;
associated with nonlinear element i
Scalar nonlinear parameter for nonlinear
element i

J4{@)/Bni(@)]No .r NO

Degree-of-freedom
Frequency response function
Nonlinear modulation matrix on the outputs
Frequency response function matrix using the
projection onto the outputs

1. INTRODUCTION

The ability to identify and characterize damage (nonlinear
elements) in a structural system is of great importance in
the aerospace, civil engineering, and mechanical
engineering industries. Over the past two decades, this
area of vibration-based research has concentrated on
damage detection methods for various structures
including, but not limited to cracks in beams, plates, scaled
models of multi-story buildings, and frames [2]. The goal is
the detection, identification and repair of damage present
in a structural system before failure OCCUCS.
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Most current damage detection methods define damage to
be changes in the dynamic response of the system that
alter the mass, stiffness, or energy dissipation of the
structure. The majority of the methods to date are based
on changes in resonant frequencies and mode shapes. A
few methods also use neural networks, changes in
flexibility, and statistical models, but these are not as well
researched as those based on shifts in frequency and
changes in mode shapes.

There are several problems associated with the use of
frequency-based damage detection methods. in order to
use most frequency-based methods, the dynamic
characteristics of the structure must be known prior to
damage. In other words, data must be available for the
initial, undamaged state of the system. This is a problem
for older structures that were not instrumented during
construction. In addition to requiring data from both the
undamaged and damaged system, a large number of
frequency methods also assume that the damaged area of
a structure is known a priori [2]. Therefore, unless these
frequency-based methods are being implemented to
identify damage that is already known, then a majority of
the methods available become useless when the location
of damage is one of the unknowns.

If both the location of the damage and the data from the
undamaged system are available, there are still problems
with frequency-based methods. The difficulty then
becomes being able to excite the structure in a frequency
range that will excite the damage. Typically, damage is a
local phenomenon which implies that the lower-frequency
global response (which is most often measured) is less
influenced by any damage present in a system. In order to
detect damage, structures need to be excited in a much
higher frequency range. In a laboratory setting, this might
not be a problem, but for large-scale tests it is difficult to
excite a structure in the necessary range due to the
amount of energy required to produce a good response [2].

Data compression is another drawback of not only
frequency and modal-based testing, but also any vibration-
based test that implements post-processing of data
acquired. Data are commonly windowed and averaged to
avoid leakage and obtain a clearer visualization of the
dynamic response of the system in the frequency domain.
Although this may provide cleaner modal data, a lot of
information about the structure is potentially lost through
the data reduction process. But without the use of data
reduction, the data will most likely be too complex to
accurately analyze. Therefore, most researchers take opt
to use data compression methods and rely mostly on the
modal properties obtained to identify damage present in
structural systems [2,3]. Data compression is essential,
but it is critical to implement compression algorithms that
retain damage sensitive features of the data.

Finally, a problem that is prevalent in all types of vibration-
based damage detection methods is the fact that very few
have been implemented on full-scale jn-situ structures.
Most available methods have been implemented in a
laboratory setting on scaled models such as beams and
plates. The major reason this problem exists is due to the

lack of full-scale structures that are available for
destructive testing 4].A

2The damage detection m , od implemented in this paper
(and presented in [1]) is sed upon frequency data, but
does not contain the majority of the aforementioned
“problems” with frequency-based vibration tests.
Specifically, Adams’ method does not depend on; changes
in resonant frequencies or mode shape, the undamaged
state of the system, or prior knowledge of the damage
location(s).

In the following sections, Adams’ method will be presented
and then applied to an 8-dof mass-spring system.
Examples of results and issues concerning the
implementation of the method in question will also be
discussed.

2. ADAMS’ THEORY

2.1 Overview of Adam’s Method

Adams presents a new method for detection, classification,
and location of nonlinear elements in a given system [5].
His focus is on a derivation of the frequency response
funciion [1], and on a superposition principle for nonlinear
systems [5].

The input data, output data, and the number of degrees-of-
freedom make up an experimental system description. The
key to Adams’ method is that it views the nonlinearity as an
internal force, which acts together with external forces on
the underlying linear system [1]. Known effects of the
linear FRF are removed from the nonlinear behavior,
isolating the nonlinear force.

In real systems one typically has fewer inputs than outputs.
Normally, the lumped parameter model of the system would
look like

{x( flJ)}Nox, = [~ L(@)lNoxNi{~(@)lNul (1)

where No is the number of outputs and Ni is the number of
inputs. To allow nonlinear forces at each response
locations, the lumped parameter model equations are
written as

{x(0) jNoxl = [HL (fD)lNaW.{~(@)lNm] (2)

By keeping track of the outputs, Adams’ method treats the
nonlinearities as hidden inputs. These inputs are
unmeasured, internal, feedback forces that are nonlinear
functions of the output [1]. Use of multiple inputs and
multiple outputs (MIMO) also aids in tracking these
nonlinearities.

2.2 Using the Feedback Loop and the MIMO system

The model in equations (1), (2) is inappropriate for
nonlinear systems. The. linear and nonlinear dynamics
combine creating an FRF matrix of the nonlinear system
that is different from the FRF matrix of the linear system [1].
This prompted Adams to view the nonlinearity as a lumped
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element. In the frequency domain, the total system model
is:

In this impedance model, /BL(@ is the linear impedance.
The nonlinear portions are found in the vector

P,(a#/B.,}X~(o). X.(O) is the scalar that determines the
class of the nonlinearity. (Bnl) has three possible values, O,
-1, 1, which determine the location of the nonlinearity. The
final term, Y,(o), quantifies the strength of the feedback
force. The vector p,(0)lBnl}Xm(co) describes one
nonlinearity. A generalization of this sums many such
nonlinear vectors.

The FRF matrices of the linear system couple the nonlinear
and linear mechanics. Use of the impedance relationship

1
B,(o) = —

HL(to)
(3a)

avoids much of this coupling. The internal feedback forces
are functions of the outputs [1]. In equation (4) below, Nn
nonlinearities are allowed.

(BL(@lNoflo{x(@)/#ad+ijj(co)i%;llkl Xnjw = (m)lN., (4)

Reviewing (4):

(BL(@)}No.rN.{x(@)lN..)= Im@lNo.rl- $#i(@){BhilNor,xmj(@).(5)

Adams notes that if you ignore the nonlinear terms in (5),
the equation becomes linear [1]. In a real system assumed
to be linear, the nonlinear terms just contribute noise or
other errors that are ignored.

At every frequency (B J X .(o) is a linear combination of.Ab.rfru

the response vector components of {X(m)]. This gives the
Ml MO, spectral, total least-squares set of equations

tBti(a)]N..,, x.,(a) =[,Bni(o)lNoflo{x(a))h, (6)

Equation (6) describes the nonlinear behavior as a function
of measured responses. As Adams notes, the nonlinear
behavior can also be described as a function of the
measured external forces.

{Bn;(@)lNM,xni(@)=[,Bn,(m)lNa{F(@)lm, (7)

Equation (7) eliminates the unmeasured internal forces in
favor of the measured external forces [1].

By combining equations (4) and (6)

{B, (ti)lM2rN,,{x(a)lk,, +[R(@)lN*(x(@lti, = {F(a) )flm,. (8)

The entire summation is replaced with a single impedance
matrix, [Bn(@. In figure (1) it is easy to see the feedback

nature of this equation.

4=7--J
I I

Figure 1: Closed loop representation of equation (8)

2.3 Locating the Damage

If the system is purely linear, the loop is unnecessary.
When considering a nonlinear system with damage
present, the closed loop model with feedback of the internal
forces is applicable.

In [1], Adams defines three equations

{x(@)~o,, = [[Ovoxivo+[~~(@)l/vofio1%(@lJ’ {~(~))ivo.,
(9)

{x(a)] = [xH~ (ti)l[H, (@)lNmNo{~(~)) (lo)

{X((Z)]=[XH((Z)]{F((L)) (11)

Using these equations, it is possible to calculate, locate,
and describe a nonlinearity present in a system.

The matrix /xH(@ is the modulation matrix that determines
the strength and location of the nonlinearity. As the system
becomes more linear this matrix approaches the identity
matrix [5]. This is used to determine the strength of the
nonlinearity.

The rows of the modulation matrix determine the location of
the nonlinearity. Each row corresponds to one of the
degrees-of-freedom, so if two rows have significant values
present in them, then the nonlinearity is located between
those degrees-of-freedom [5].

3. APPLICATION TO AN 8-DOF SYSTEM

3.1 Description of 8-DOF System

In an attempt to validate Adams’ method, an experiment
was performed on an 8-dof system that consisted of eight
masses and seven springs connected in series. Uniaxial
accelerometers were attached to each of the eight masses.
A force transducer located at the base of the configuration
recorded the force input to the system (See Figure 2). In
order to mount the mass-spring system vertically, it was
threaded through a stainless steel bar which was attached
to a steel frame (See Figure 2). The stainless steel bar
introduced coulomb friction into the system. The mass-
spring system would tend to “stick and then slip” along the
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bar. To minimize this affect, the stainkss steel bar was
lubricated with Tri-Flo, a common commercial lubricant,
before the masses and springs were installed for each test.

,

Figure 2: 8-DOF Experiment Setup

A more detailed diagram of the mass-spring system is
shown in Figure 3 and the nominal values of the eight
masses and seven springs are listed in Table 1.

Nominal Values of Masses Spring Constants
Unit Ml M2-M8 Unit K1 -K7
kg I 0.5593 0.4194 Kn/m 56.7

Table 1: Values of Masses and Springs

To introduce a nonlinearity into the 8-dof system, two
bumpers consisting of tiny steel bars were attached to oile
of the masses. Rather than having a metal-metal contact
when the bumpers hit, “bumper contacts” were made out of
a dense polymer that fit inside the head of a hex screw.
This provided a better contact surface (See Figure 4).

I=%d m’r T

nmB BwTekm “
-;

. .

Bushing

Bz!L2@ng

wxti
to S&l
COllafsAlwmnwn

Mass

&

U

Thmi@I
Holes

ml

L

TaPped
Hde ~ ~11.lrnm T

12.5 mm
H

I 25.4 mm

I

36.0 mm
Ty@ca!

6.35 mm

P-=+7
Figure 3: Detailed diagram of mass-spring system

Figure 4: View of Bumpers and Bumper Contacts

3.2 Equipment Used

The following equipment were used during the tests of the
8-dof system. Tables 2 and 3 contain the specifications of
the sensors used.

1. 40 channel HP3566A167A data acquisition system
a. 35653A 50 kHz input source
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3. Vibration Test Systems, V6 100-6
electromagnetic shaker 1

4. Endevco 2251-A ISOTROI@ PE Accelerometers
5. PCB 208A04 piezoelectric force transducer
6. Matlab v. 5.3 RI 1.1
7. IBM ThinkPad Pentium Laptop

Accelerometer Serial Channel Sensitivity
Position Number Number (mvlg)

Ml DF39 2 9.873

M2 DE60 3 10.06

M3 DG78 4 9.561
M4 DF53 5 9.696

M5 DF1 O 6 9.851
M6 DG77 7 9.605
M7 DE94 8 10.04
M8 DF43 9 9.439

Table 2: Specifications for Endevco 2251A-10 ISOTROI@ PE
Accelerometers

Force Transducer Channe, ~“mber
Serial Number

Sensitivity (lbf/V)

2041 1 1.000

Table 3: Specification for PCB 208A04 Piezoelectric
Force Transducer

3.3 Description of Experiment

For all tests, a 10V random excitation was generated by the
HP3566A, amplified by the TECHRON power amplifier, and
input to the 8-dof system at the base of the structure (below
mass 1). Two separate tests were run to obtain both the
linear and nonlinear dynamic responses of the system.
The first test was run without any bumpers installed to
capture the linear. Then the bumpers were installed
between two particular masses to obtain nonlinear data.
Several separate tests were taken with the bumpers in
different locations to provide a larger data set for analysis
purposes. For both the linear and nonlinear setups, the
outputs of all accelerometers and the force transducer were
recorded by the HP3566A and saved for post-processing.

3.4 Data Acquisition and Processing

Time domain data were acquired for 32-seconds, sampled
at 1024 samples per second. Data were then saved to disk
and converted to universal file format for post-processing.
Each time ffle consisted of eight acceleration time histories
and one input force time history with 32768 samples per
channel.

The Signal Analysis Toolbox within Matlab was used to
post-process {6] the time data. The data were processed
using traditional FFT analysis techniques using spectral
windowing and overlap processing. The FRFs and
coherence functions were calculated with the tie and
cohere functions respectively with an fft size of 1024,
sample rate of 1024, a banning window, and a 50’%
overlap.

Generally speaking, the use of the banning window helps
prevent leakage of data. Specifically, the banning window

attenuates the input signal by bringing both ends of each
block of data to zero. This removed end-of-block
discontinuities in the signal. In Fourier series analysis, any

I discontinuities in the time domain signal are represented by
a large number of low and high frequencies. As a result,
the output generated contains many high frequency
components. By using the banning window, and thus
removing the high frequency components in the input
signal, the high frequency components in the output data
were attenuated. The removal of the efiraneous side band
frequencies that occur as a result of the discontinuities
produced data that were more representative of the actual
output data.

3.5 Implementing Adams’ Method

Equations (9) and (11) are the primary equations used in
solving for the known nonlinearities in the 8-dof system.
Equation (12) is formed by left multiplying the term that is
inversed in equation (9):

{X(m) )N~,‘tHL(@L@&;(@] ~(@)Nti, ‘[HL(@L#O {N@ )NII.

(12)

Subtracting {X(o$}til from each side of the equation forms

WL(~)lwx~ot % (ohxw {x (fi))wxl = {A)w,l. (13)

Here, {A}, is the difference between the computed Fourier
spectrum of the outputs and the measured Fourier
spectrum of the outputs. Computed outputs are based on
the underlying linear FRF of the nonlinear system. The
difference between the measured and computed responses
represents the contribution of nonlinear internal forces.

Since {X(o)}w, and {l+L(@mNo{F(iB)}h, are known, {A} can
be obtained. By taking successive blocks of data and
using a linear regression technique, the product
[IYL(a&JBn(m)]tiw is estimated.

Alternatively, equation (11 ) can be solved for the estimate
of the nonlinear frequency response function matrix
projected onto the outputs, [xH(0)]. This produces the
same results as those given by solving for

[H,(@lmtJB.(oM.a.. in equation (12).

The 8-dof system was excited by a single input at the base
of the stainless steel bar beneath mass 1 (See Figure 2).
Equations (1O) and (12) require that the FRF matrix due to
the underlying linear system, [HL(rn)]tiM, be N#UO. This
requires an input at each of the degrees of freedom. With
a single input, the FRF matrix of the underlying linear
system is /VoX7. In [5], Adams’ method is applied to a
system with a single input and multiple outputs. There
might be slight errors in the results due to numerical
instability of the inverse in equation (9), but the
nonlinearities present can still be identified.

3.6 Results of Experiment

As described in Section 3.5, both the product

iH,(o-MrvoxdBn(o$ltiw and the matrix [xH(io)], were calculated
from the 8-dof experimental data. Sample plots of these
two matrices for damage between masses 3 and 4 are
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shown below (See Figures 5 and 6). Each plot shows the
two matrices as functi&s of position and frequency.
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Figure 5: [HL(to)]hJBJco)lhm Matrixshowing
Nonlinearity Present Between Masses 3 & 4

The largest magnitude occurs between positions 3 and 4 in
both figures. The peak magnitudes in these plots indicate
how much [HL(uj]tiJBn(@lmm and [.H(@)] ~ resPec~velY~
differ from the identity matrix. The peak magnitude

between positions 3 and 4 corresponds to a nonlinearity
present between masses 3 and 4.

Some of the results detect the known nonlinearity present
for a given location, but not all scenarios tested were

accurately identified by either method discussed in the
previous section. For example, Figure 5, shows the
accurate identification (using equation (12)) of a
nonlinearity present between masses 3 and 4. The same
method, applied when the induced nonlinearity was
between masses 2 and 3 does not show a peak between
locations 2 and 3 (See Figure 7). The same is true when
solving for [)-f(o)]. Figure 8 shows the plot of [=H(co)] for a
nonlinearity located between masses 4 and 5. This clearly
indicates that the results from the 8-dof experiments are
inconclusive.

Due to the results discussed above and shown in the
previous figures, it is concluded that the methods
presented in [1] and [5] do not consistently identify
nonlinearities in the 8-dof system tested.

There are several reasons why the application of Adams’
method produced inconclusive results for the 8-dof system
discussed in this paper.

1. The 8-dof system, without the bumpers installed,
was not linear. The stainless steel bar that kept
the mass-spring system vertical, introduced a
nonlinearity (in the form of friction) into the system.
The underlying linear FRF that was measured,
[H,(o)], was therefore not an accurate
measurement. This was actually a measurement
of a nonlinear system. The nonlinearity had an
unpredictable effect on calculations of equations

(9) and (11 ). Theses calculations were therefore
based on the FRF of a nonlinear system.

I#Wl
NmIIuwar6y 8etween t&SSES ~

POsilwn

Figure 6: Ijf(o)] Matrix Showing Nonlinearity Present
Between Masses 3 & 4

lkh’o&Je”M$&.e&
Ndmeaiity Selween Masses 283

+
Positi0n4 3 2 1

u

Figure ?: [HJ@]Nm#3J@)]_ Matrix showing No Peak
Present Between Positions 2 & 3

2. The system was only excited with a single input
instead of an input at each degree-of-freedom.
Though a nonlinearity present in a system that is
excited with a single input may be identified
successfully, multiple inputs into the 8-dof system
provide the necessary information to fully
characterize a nonlinearity present at any location.

3. Adams’ method relies on inverting the FRF
&l~(@jtiw with only partial knowledge of
[U,(co)jtiti This inversion cannot be completely

with a single input. The solution to this problem is
to drive the system with multiple inputs. This
drastically reduces the errors that are formed
when the inverse is calculated in equation (9).
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Given existing time constraints, the 8-dof system could not
be modified to have an input at each degree of freedom.
We therefore suggest that this method be tested again after
the system has been configured for multiple inputs and the
friction due to the stainless steel bar be minimized or
eliminated.

4. SUMMARY AND IMPORTANT ISSUES

An attempt was made to validate a method suggested by
Adams in [1,5] to detect nonlinearities present in the 8-dof
experimental example presented in this paper. Application
of the frequency-based detection method produced
inconclusive results for the mass-spring system for most
scenarios presented. We conclude that this method of
detection, based on a single input, is not reliable or
repeatable for this experimental structural system.

Some simple changes, such as providing multiple inputs
into the system instead of a single input, should
theoretically produce results that show the accurate
detection of nonlinearities present at any location in the
structural system. This is due to the fact that the errors in
the results due to numerical instability of the inverse

V+,(@lWti in equation(9) would be reduced to a minimum.
fn addition, if the inherent nonlinearity produced by the
stainless steel bar that supports the system was reduced to
a minimum, or removed altogether, the system would
resemble a more linear system before the bumpers were
installed. This would change all of the results obtained and
would most likely detect damage at all positions.

Finally, validation on a large-scale structure is another
issue that needs to be addressed before Adams’ method
can be truly classified as a reliable damage locator. Most
damage detection methods seek to locate and repair any
damage present in a structural system before failure
occurs. It is perfectly acceptable to perfofrn small
laboratory experiments to determine if the method

—

detection m&hod, validation with
scale tests is required.
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