11,593 research outputs found

    An Interview With Albert W. Tucker

    Get PDF
    The mathematical career of Albert W. Tucker, Professor Emeritus at Princeton University, spans more than 50 years. Best known today for his work in mathematical programming and the theory of games (e.g., the Kuhn-Tucker theorem, Tucker tableaux, and the Prisoner\u27s Dilemma), he was also in his earlier years prominent in topology. Outstanding teacher, administrator and leader, he has been President of the MAA, Chairman of the Princeton Mathematics Department, and course instructor, thesis advisor or general mentor to scores of active mathematicians. He is also known for his views on mathematics education and the proper interplay between teaching and research. Tucker took an active interest in this interview, helping with both the planning and the editing. The interviewer, Professor Maurer, received his Ph.D. under Tucker in 1972 and teaches at Swarthmore College

    A computer operated mass spectrometer system

    Get PDF
    Digital computer system for processing mass spectrometer output dat

    Computer control of mass analyzers

    Get PDF
    Digital computer control of mass spectrometer

    Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    Get PDF
    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus

    Applications of flight control system methods to an advanced combat rotorcraft

    Get PDF
    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings

    Southern Sky Redshift Survey: Clustering of Local Galaxies

    Get PDF
    We use the two-point correlation function to calculate the clustering properties of the recently completed SSRS2 survey. The redshift space correlation function for the magnitude-limited SSRS2 is given by xi(s)=(s/5.85 h-1 Mpc)^{-1.60} for separations between 2 < s < 11 h-1 Mpc, while our best estimate for the real space correlation function is xi(r) = (r/5.36 h-1 Mpc)^{-1.86}. Both are comparable to previous measurements using surveys of optical galaxies over much larger and independent volumes. By comparing the correlation function calculated in redshift and real space we find that the redshift distortion on intermediate scales is small. This result implies that the observed redshift-space distribution of galaxies is close to that in real space, and that beta = Omega^{0.6}/b < 1, where Omega is the cosmological density parameter and b is the linear biasing factor for optical galaxies. We also use the SSRS2 to study the dependence of xi on the internal properties of galaxies. We confirm earlier results that luminous galaxies (L>L*) are more clustered than sub-L* galaxies and that the luminosity segregation is scale-independent. We find that early types are more clustered than late types, but that in the absence of rich clusters, the relative bias between early and late types in real space, is not as strong as previously estimated. Furthermore, both morphologies present a luminosity-dependent bias, with the early types showing a slightly stronger dependence on luminosity. We also find that red galaxies are significantly more clustered than blue ones, with a mean relative bias stronger than that seen for morphology. Finally, we find that the relative bias between optical and iras galaxies in real space is b_o/b_I \sim 1.4.Comment: 43 pages, uses AASTeX 4.0 macros. Includes 8 tables and 16 Postscript figures, updated reference

    Lunar Flight Study Series: Volume 8. Earth-Moon Transit Studies Based on Ephemeris Data and Using Best Available Computer Program. Part 3: Analysis of Some Lunar Landing Site Problems Utilizing Two Fundamental Principles

    Get PDF
    This report presents two fundamental properties of lunar trajectories and makes use of these properties to solve various lunar landing site problems. Not only are various problems treated and solved but the properties and methods are established for use in the solution of other problems. This report presents an analysis of lunar landing site problems utilizing the direct mission mode as well as the orbital mission mode. A particular landing site is then specified and different flight profiles are analyzed for getting an exploration vehicle to that landing site. Rendezvous compatible lunar orbits for various stay-times at the landing site are treated. Launch opportunities are discussed for establishing rendezvous compatible lunar orbits without powered plane changes. Then, the minimum required plane changes for rendezvous in the lunar orbit are discussed for launching from earth on any day. On days that afford rendezvous compatible opportunities, there are no powered plane change requirements in the operations from launch at AMR through the rendezvous in lunar orbit, after the stay at the lunar site

    A note on the convergence of parametrised non-resonant invariant manifolds

    Full text link
    Truncated Taylor series representations of invariant manifolds are abundant in numerical computations. We present an aposteriori method to compute the convergence radii and error estimates of analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field, from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the invariant manifolds
    corecore