14,281 research outputs found

    Report on the first binary black hole inspiral search in LIGO data

    Full text link
    The LIGO Scientific Collaboration is currently engaged in the first search for binary black hole inspiral signals in real data. We are using the data from the second LIGO science run and we focus on inspiral signals coming from binary systems with component masses between 3 and 20 solar masses. We describe the analysis methods used and report on preliminary estimates for the sensitivities of the LIGO instruments during the second science run.Comment: 10 pages, 2 figures. Added references for section 2, corrected figure 1. To appear in CQG, in a special issue on the proceedings of the 9th Annual Gravitational Wave Data Analysis Workshop (GWDAW), Annecy, France, Dec. 200

    Helicopter simulation validation using flight data

    Get PDF
    A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator

    The Loudest Event Statistic: General Formulation, Properties and Applications

    Full text link
    The use of the loudest observed event to generate statistical statements about rate and strength has become standard in searches for gravitational waves from compact binaries and pulsars. The Bayesian formulation of the method is generalized in this paper to allow for uncertainties both in the background estimate and in the properties of the population being constrained. The method is also extended to allow rate interval construction. Finally, it is shown how to combine the results from multiple experiments and a comparison is drawn between the upper limit obtained in a single search and the upper limit obtained by combining the results of two experiments each of half the original duration. To illustrate this, we look at an example case, motivated by the search for gravitational waves from binary inspiral.Comment: 11 pages, 8 figure

    A new numerical method to construct binary neutron star initial data

    Full text link
    We present a new numerical method for the generation of binary neutron star initial data using a method along the lines of the the Wilson-Mathews or the closely related conformal thin sandwich approach. Our method uses six different computational domains, which include spatial infinity. Each domain has its own coordinates which are chosen such that the star surfaces always coincide with domain boundaries. These properties facilitate the imposition of boundary conditions. Since all our fields are smooth inside each domain, we are able to use an efficient pseudospectral method to solve the elliptic equations associated with the conformal thin sandwich approach. Currently we have implemented corotating configurations with arbitrary mass ratios, but an extension to arbitrary spins is possible. The main purpose of this paper is to introduce our new method and to test our code for several different configurations.Comment: 18 pages, 8 figures, 1 tabl

    A Multiscale cohesive law for carbon fiber networks

    Get PDF
    Better predictive models of mechanical failure in low-weight heat shield composites would aid material certification for missions with aggressive atmospheric entry conditions. Here, we develop such a model for the rapid engineering analysis of the failure limits of phenolic impregnated carbon ablator (PICA) - a leading heat shield material whose structural component is a carbon fiber network. We hypothesize inelastic deformation failure mechanisms and model their behavior using molecular dynamics simulations to calculate the binding energy. We then upscale this binding energy to the macroscale using a renormalization argument. The approach delivers insightful and reasonably accurate macroscale predictions that compare favorably to experiments. In application, the model is validated for a particular variety of PICA by comparison to experiment and would then be used to study design scenarios in different entry conditions

    A Multiscale cohesive law for carbon fiber networks

    Get PDF
    Better predictive models of mechanical failure in low-weight heat shield composites would aid material certification for missions with aggressive atmospheric entry conditions. Here, we develop such a model for the rapid engineering analysis of the failure limits of phenolic impregnated carbon ablator (PICA) - a leading heat shield material whose structural component is a carbon fiber network. We hypothesize inelastic deformation failure mechanisms and model their behavior using molecular dynamics simulations to calculate the binding energy. We then upscale this binding energy to the macroscale using a renormalization argument. The approach delivers insightful and reasonably accurate macroscale predictions that compare favorably to experiments. In application, the model is validated for a particular variety of PICA by comparison to experiment and would then be used to study design scenarios in different entry conditions

    Progress towards Gravitational Wave Astronomy

    Full text link
    I will review the most recent and interesting results from gravitational wave detection experiments, concentrating on recent results from the LIGO Scientific Collaboration (LSC). I will outline the methodologies utilized in the searches, explain what can be said in the case of a null result, what quantities may be constrained. I will compare these results with prior expectations and discuss their significance. As I go along I will outline the prospects for future improvements.Comment: Based on a talk presented at the joint "18th International Conference on General Relativity and Gravitation" and "7th Amaldi Conference on Gravitational Waves", 8-13 July 2007, Sydney, Australi

    Classification of osteosarcoma T-ray responses using adaptive and rational wavelets for feature extraction

    Get PDF
    Copyright 2007 Society of Photo-Optical Instrumentation Engineers. This paper was published in Complex Systems II, edited by Derek Abbott, Tomaso Aste, Murray Batchelor, Robert Dewar, Tiziana Di Matteo, Tony Guttmann, Proc. of SPIE Vol. 6802, 680211 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.In this work we investigate new feature extraction algorithms on the T-ray response of normal human bone cells and human osteosarcoma cells. One of the most promising feature extraction methods is the Discrete Wavelet Transform (DWT). However, the classification accuracy is dependant on the specific wavelet base chosen. Adaptive wavelets circumvent this problem by gradually adapting to the signal to retain optimum discriminatory information, while removing redundant information. Using adaptive wavelets, classification accuracy, using a quadratic Bayesian classifier, of 96.88% is obtained based on 25 features. In addition, the potential of using rational wavelets rather than the standard dyadic wavelets in classification is explored. The advantage it has over dyadic wavelets is that it allows a better adaptation of the scale factor according to the signal. An accuracy of 91.15% is obtained through rational wavelets with 12 coefficients using a Support Vector Machine (SVM) as the classifier. These results highlight adaptive and rational wavelets as an efficient feature extraction method and the enormous potential of T-rays in cancer detection.Desmond Ng, Wong Fu Tian, Withawat Withayachumnankul, David Findlay, Bradley Ferguson and Derek Abbot

    Electroweak Radiative Corrections to Neutral-Current Drell-Yan Processes at Hadron Colliders

    Get PDF
    We calculate the complete electroweak O(alpha) corrections to pp, pbar p -> l+l- X (l=e, mu) in the Standard Model of electroweak interactions. They comprise weak and photonic virtual one-loop corrections as well as real photon radiation to the parton-level processes q bar q -> gamma,Z -> l+l-. We study in detail the effect of the radiative corrections on the l+l- invariant mass distribution, the cross section in the Z boson resonance region, and on the forward-backward asymmetry, A_FB, at the Fermilab Tevatron and the CERN Large Hadron Collider. The weak corrections are found to increase the Z boson cross section by about 1%, but have little effect on the forward-backward asymmetry in the Z peak region. Threshold effects of the W box diagrams lead to pronounced effects in A_FB at m(l+l-) approx 160 GeV which, however, will be difficult to observe experimentally. At high di-lepton invariant masses, the non-factorizable weak corrections are found to become large.Comment: Revtex3 file, 39 pages, 2 tables, 12 figure
    corecore