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ABSTRACT

In this work we investigate new feature extraction algorithms on the T-ray response of normal human bone
cells and human osteosarcoma cells. One of the most promising feature extraction methods is the Discrete
Wavelet Transform (DWT). However, the classification accuracy is dependant on the specific wavelet base chosen.
Adaptive wavelets circumvent this problem by gradually adapting to the signal to retain optimum discriminatory
information, while removing redundant information. Using adaptive wavelets, classification accuracy, using a
quadratic Bayesian classifier, of 96.88% is obtained based on 25 features. In addition, the potential of using
rational wavelets rather than the standard dyadic wavelets in classification is explored. The advantage it has
over dyadic wavelets is that it allows a better adaptation of the scale factor according to the signal. An accuracy
of 91.15% is obtained through rational wavelets with 12 coefficients using a Support Vector Machine (SVM) as
the classifier. These results highlight adaptive and rational wavelets as an efficient feature extraction method
and the enormous potential of T-rays in cancer detection.

Keywords: Terahertz time-domain spectroscopy, T-rays, osteosarcoma, adaptive wavelets, rational MRA, fea-
ture extraction, signal classification, cancer detection, Bayesian classifier

1. INTRODUCTION

Cancer is one of the most potent killers of humanity. A common form of bone cancer is osteosarcoma' which is a
condition where malignant cancer cells are found in the bone. The probability of recovering from such a cancer
is dependent on the stage at which the cancer is diagnosed. Therefore early detection could be a matter of life
and death.

In the early stages of cancer, malignant cells are hard to distinguish from normal cells. Common diagnosis
techniques in practice now are X-Rays, Magnetic Resonance Imaging (MRI), and Computerized Tomography
(CT) scans. Using these imaging methods, a biopsy of suspected cancer cells is then performed. Biopsy is
an invasive technique where surgery is performed to obtain suspected bone cells or tissues for further analysis.
Current treatments for bone cancer are chemotherapy or complete surgical removal of cancerous cells. For an
effective treatment using both these methods, cancerous cells need to be detected in the early stages and a clear
distinction from normal cells is required. Therefore, an accurate and quick method of detecting cancerous cells
is required to increase the patients chances of survival.

THz-TDS is an emerging technology, which gives rise to a whole range of applications and still has huge
potential to be further explored and improved.? T-rays generated and detected by THz-TDS are unique in
biosensing applications due to the information they provide on a macromolecular level as compared to the
individual stretching of atomic bonds and does not suffer much from Rayleigh scattering as compared to infrared.
Hence, these qualities form the motivation for applying THz-TDS to classify between human osteosarcoma cells
(HOS) and normal human bone (NHB) cells.

Through T-ray imaging, it is possible to be able to detect the existence of these malignant cancer cells. T-rays
provide a more precise level of image differentiation than X-rays at shallow depths. T-rays are also non-ionizing,
therefore making it appealing for a non-invasive diagnostic technique.
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Figure 1. Optical microscope images of (a) Human osteosarcoma cells (b) Normal human bone cells. These images are
of cells grown on a petri dish, and can be visually distinguished. However, optical discrimination is not so clear® during
surgery where there is a need to ensure all cancerous regions are truly removed. T-rays are a possible modality that may
allow a surface scan during the process of surgical removal.

2. PREVIOUS WORK

The application of T-rays as a cancer detection modality has been explored mainly on bulk tissue samples.?
Ferguson et al.% tackled this problem from a cellular level and promising results were obtained. The motivation
for investigating the HOS and NHB cells at a cellular instead of bulk excised tissue is because of a large number
of factors influencing the measured terahertz response and changes in the concentration of water molecules and
its bonds are likely to dominate the response.

Ferguson et al.% used the deconvolved magnitude and phase frequency components as features for classifica-
tion. Genetic algorithms (GA) were employed as a feature selection method to select the optimal features. The
classification accuracies were used as a fitness function, and the GA iteratively searches features which gives the
highest accuracy. However this computation was done at the expense of time.

Withayachumnankul et al.” extended this work by improving the generalization ability of classifiers and the
speed of feature selection process, using sophisticated feature subset selection methods. However, previous works
so far utilizes features from the time and frequency domain. Also, Yin et al® utilized wavelet coefficients as
input features for classification and successfully obtained a high degree of accuracy. However, the best wavelet
base was selected using a ‘trial and error’ method. This motivates the work on a feature extraction method base
on wavelets which automatically chooses the best wavelet base.

3. CELL PREPARATION AND MEASUREMENT

The NHB cells were cultured from small pieces of trabecular bone, which is the spongy interior of a bone for 4-6
weeks. The HOS cells were cultured from an immortalized cell line and a confluent culture was obtained within
1 week. The cells were cultured in 5 mL of Dulbeccos Modified Eagle Media (DMEM) supplemented with L-
Glutamine (0.29 g/1), 10% foetal bovine serum and Gentamicin (16 pg/ml) as an antibiotic in 25 ml polystyrene
flasks. Both of the cell types contain the same media and cultured in a 5% carbon dioxide environment at 37°C
to ensure a constant environment setting. Optical microscope images of the cells are shown in Figure 1. Once
confluent, the cells form a thick dense layer on the bottom of the flask.

Using a scanned THz imaging system ,° T-ray pulses are incident on HOS and NHB cells grown in trans-
parent plastic flasks. A lock-in amplifier is set with a time constant of 10 ms. The ultrafast pulse laser was a
regeneratively amplified Ti:sapphire laser producing 130 fs pulses at 0.7 W with a 1 kHz repetition rate. Also,
2 and 4 mm thick <110> oriented ZnTe crystals were used as the THz emitter and detector respectively. Three
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Figure 2. The average T-ray time domain waveform of HOS and NHB cells.

identical flasks were used. The first two contained confluent HOS cells and confluent NHB cells in cell media.
The third flask was used as a reference and contained only the cell media solution.

A THz image was obtained providing spectroscopic information at 48 different positions or pixels. This then
provided sufficient data to allow statistical classification algorithms to be used to attempt to differentiate the
cells. Each waveform at a location contained 200 data points sampled every 0.067 ps for a duration of 13.33 ps.
The average time domain waveforms for HOS and NHB cells are shown in Figure 2.

4. FEATURE EXTRACTION
4.1. Adaptive Wavelets

Classical Discrete Wavelet Transforms are carried out by firstly selecting a particular wavelet base such as
Daubechies, Coiflets, and Haar. Mallet et al..'Y proposed a new form of wavelets, which gradually adapts to the
signal relative to a discriminant criterion. This section presents a succinct description of the algorithm used to

generate adaptive wavelets.

4.1.1. m-band Discete Wavelet Transform (DWT)
For a general m-band DWT, there is one low pass filter and m — 1 high pass filters. The number of coeflicients
in each band is 1/m the previous level. The low pass filter are denoted £ = (o, ...,¢n,—1) and high pass filters

h®) = (ho(s)7 e hgi;) where Ny =m(q+1). A choice of g determines the length of the filters, which relates to
the smoothness of the wavelets. The filtering operations from level [ to [ 4+ 1 are given by

apie = 3 liClmktis (1)
=0
Nj-1

A, = W e rss s=1,...,m—1. 2)
i=0

The m-band DWT can be expressed in matrix form by
2 = izl (o), (3)

Proc. of SPIE Vol. 6802 680211-3



where W is the block-Toeplitz structure of the low and high pass filter coefficients.!!

The low and high pass filters can be represented by the wavelet matrix, A. For example m =3,¢ =1, Ny =6
the wavelet matrix has the form

EO El EQ €3 €4 65
A= | n” B B AL AL W
héz) hgz) héz) héz) hiz) hgz)
4.1.2. Filter Coefficient Conditions

For a MRA and wavelet basis to exist, the following conditions must be satisfied

Shifted Orthogonality ), AkA;;FH = 0pil
Basic Regularity Condition ), {;, = /m

Lawton Matrix Condition M;; = )", {ili1j—m: , where the M has to have an eigenvalue and its multiplicity
equal to 1.

4.1.3. Parameterization of the Filter Coefficient Matrix
Optimizing over all filters coefficients (m Ny parameters) would be a computationaly demanding task. Therefore,
the wavelet matrix A can be parameterized so that the optimization parameters are reduced to (Ny — 1).

Given that the condition stated in Section 4.1.2 are satisfied, the wavelet matrix can be factorized into
A=Q0OmR0O-.-0F,, (4)

where O denotes the ’polynomial product’. Here, F; = (R;I — R;), where the symmetric projection matrix
R; = wjul

i

The orthogonal matrix Q is composed of

1/y/ml
Q = ) (5)
(I —200v")T.D

where T is an upper triangular matrix with diagonal elements 7;; = ¢ — m and off-diagonal elements equal to 1.
Also, D is a matrix that normalizes the rows of T'. Thus, the wavelet matrix can be constructed by normalized
vectors uy, ..., uq and v. Initially these vectors are randomly assigned from the uniform distribution.

4.1.4. Discriminant Criterion

The adaptive wavelets are used to represent the signal such that the discriminatory information is optimized.
Therefore the adaptive wavelets are optimized relative to a measure which reflects differences among classes.

The criterion is based on posterior probabilities known as the Cross Validated Quadratic Probability Mea-
sure (CVQPM) which can be computed by

171
pMxil®y — = .
CVQPM(K) = 23 aan (6)
! [ RS 1
_ 2
where ag); = §+memﬁ»f§2?%@w;@), (7)

where P(T|XZ.[E]T) (t)) is the posterior probability for the true class of Xim (t) and P/i(r|Xi[l] (t)) is the posterior

probability for Xim (t) belonging to class r. These posterior probabilities can be calculated as outlined in Sec-
tion 5.1.1. The CVQPM has a range of values between 0 and 1. A high CVQPM value implies that the classes
can be well differentiated. Figure 3 shows the flowchart for adaptive wavelets algorithm.
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Figure 3. The Adaptive Wavelet al.gorithm.

4.2. Rational Wavelets

The classical Multiresolution Analysis (MRA) introduced by Mallat!? is a special case of the rational MRA,
whereby the scaling factor used was 2, and thus called dyadic scaling. However dyadic MRA may not provide a
good enough separation of signal components for certain cases. This motivates the need to explore the application
of rational wavelets in classification processes, where rational MRA may be used to allow a better adaptation
of the scale factor according to the signal.!® The scaling factor of rational wavelets is p/q. The dyadic case is
when p = 2,¢ = 1. By having a fractional dilation factor, it may provide a sharper frequency localization.' As
classical MRA is a specific case of the rational MRA, thus the same theorems that govern classical dyadic MRA
apply to rational MRA too.

4.2.1. Algorithm

The section briefly covers the main algorithms used in this project which are based on the work by Baussard et
al..!3 For analysis (i.e. decomposition of the signal), a pyramidal scheme is used. Figure 4 shows that the signal
is decomposed into its approximate and detail coefficients. For each level, the number of detailed coefficients is
(1—=p/q) of the approximate signal. Note that the original signal is treated as an approximate coefficient at level
0, (i.e. cA0).

To obtain the approximate coefficients of the other levels, the following equation is used,

jsqri = Y hilps —rlaj 1, (8)

T
where s € Z,i = 1,...q — 1,h;[n] = (@0, ¢—1.n) is the impulse response of the ¢ numerical filters and
hiln] = h[—n]. This equation shows the decomposition from a higher level approximation a;_; to a coarser

approximation a;.

Similarly, the detail coefficients of the signal are obtained by,

A7 =" Gmlnp —rlaj_1, 9)
i
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Figure 4. Decomposition of a signal into its approximate and detail coefficients. (a) The classical scaling (dyadic) with
p=2, ¢ =1. (b) Rational scaling of p =3, ¢ = 2.
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Figure 5. Pyramidal Analysis Algorithm. After Baussard et al.'®

which is a convolution between aj — 1 and the filter g,, and a down-sampling of p. Figure 5 is a block diagram
describing the structure of the algorithm for a general case the rational number of M = p/q is used.

To practically implement rational wavelets, the filters need to be appropriately designed. This is because the
filters used determine the shape of the wavelets that are used. As will be seen later, that rational orthogonal
wavelet bases are defined in the Fourier domain, therefore it would be good to define the filters in the Fourier
domain instead. Furthermore, implementation in the Fourier domain avoids truncation.

o (w) = msﬁéf(\ic;)e_mm 7 (10)
Gm(w) = \/MM . (11)

¢(w)

These rational wavelet bases are based on Meyer construction extended to the rational case, as proposed by
Auscher'® and it requires to fulfil certain conditions to be considered as an Auscher basis for the rational case.
The scaling function ®(¢) and wavelet function W(t) used is'®

(2m)} Wl < w1
1
P(w) =19 (2m)2 cos(5A(Llwl —q)), wi <|w] <wy
0, |w| > ws
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|w| % (w1, ws]

where w; = (¢ — ﬁ)w , We = awy , w3 = awg = a’w; and B(t) = t*(35 — 84t + 70t? — 20t3) is the construction
function.

5. CLASSIFICATION AND VALIDATION

The problem of classification is a complex one because of the No Free Lunch theorem.'” This theorem states
that, given an ideal general set of data, no classifier is better than another. A highly accurate result from a
particular classification algorithm is due to the physical properties of the problem that include data distribution,
prior knowledge, and size of training data, rather than the classification algorithm itself. The main focus of
this project is the utilization of good feature extraction techniques, which result in low dimensions. Hence, low
dimensional Bayesian classifiers are explored.

5.1. Bayesian Classification

Bayesian classifiers present a statistical viewpoint to solving classification problems.'® The main approach relies
on the Bayes decision rule with assigns test features to a corresponding target or class such that it maximizes
the posterior probability. Using Bayes theorem, the posterior probability is written as

p(x|wi) P(w;)

Pl ==

; (12)

where p(z|w;) is the class conditional probability which is the probability density function for x given that it
belongs to class w;. Here, P(w;) is the prior probability of each class, and it is usually assumed to be distributed
uniformly. Here, p(x) is the probability density of x.

The ideal Bayes classifier relies on the full knowledge of the probability density functions for each class,
which results in maximal theoretical classification accuracy. However, this is usually not the common case, and
therefore it relies on estimates based on the finite training features. Consequently, in order to further improve
accuracy, explicit assumptions are made on the class conditional probability densities. A common assumption is
that the class probability densities are from a multivariate normal distribution and expressed as

p(x|w) = (2m) Y28, |70 exp(—0.5(x — %.,)S;  (x — %.)T) , (13)
where S, and Z,, are the covariance matrices and class mean vectors respectively and calculated using maximum

likelihood estimates.

The Bayesian classifier is a simple and robust classifier suited for low dimensional data relative to the data
set size. However, it relies heavily on estimates and assumptions on the class conditional probabilities. Thus,
good estimates require an ample amount of training data and the validity of the assumptions made are vital for
the classifier’s performance.

5.1.1. Bayesian Linear Discriminant Analysis

Assuming that the covariance matrices, S, from the previous section are equal, the Bayesian Classifier can be
described as a Bayesian Linear classifier. Then S, is replaced with a pooled covariance matrix. From Equation 13,
replacing S, with Spooled, taking the logarithmic scale and ignoring the constants, it becomes

gu(z) = —0.5(x — X,)S (x—%,)T+InP(w) . (14)

-1
pooled

Consequently, the decision boundaries that separate the classes are linear.
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5.1.2. Bayesian Quadratic Discriminant Analysis

If the assumption of equal covariance matrices, S, is not valid, the Bayesian Classifier can be described as a
Bayesian Quadratic classifier. From equation 13, taking the logarithmic scale and ignoring the constants, it

becomes
gu(r) = —0.5(x —%,)S; (x — %) T + InP(w) . (15)

Consequently, the decision boundaries that separate the classes are non-linear (quadratic).

5.2. Leave-one-out cross validation

There are many validation methods to assess the accuracy of classifiers namely holdout, leave-one-out cross
validation and, k-fold cross validation.

For the leave-one-out cross validation method, one data set is held from the combined data set and the
remaining data are used to train the classifier. For example, if there are n vectors, the remaining n — 1 vectors
are used as training data. The classifier is then tested with that one vector withheld. The process is repeated n
times until each data are tested. The accuracy is then the mean of these n results. This method enables nearly
an unbiased validation of the classification accuracy. However, it is computationally expensive.

All the work in this project utilizes the leave-one-out cross validation method to assess the accuracy of the
classifier, because the number of data points available is relatively small. Small data sets do not present a
significant computational expense and other methods tend to produce biased results especially with small data
sets.

6. OSTEOSARCOMA CLASSIFICATION RESULTS
6.1. Adaptive Wavelet Features Classification

DWT entails choosing a specific wavelet family and by using adaptive wavelets, this step can be circumvented.
The linear and quadratic discriminant criterion were explored in this work.

The linear discriminant criterion makes the assumption that the class covariance matrices are equal as de-
scribed in Section 5.1.1. However, upon inspection of the class covariance matrices, the assumption is not valid.
Only the first 4 out of 48 data are shown for brevity sake. The results are biased since fewer parameters are
estimated by replacing the class covariance matrices with a pooled covariance matrix.'® Therefore, a quadratic
discriminant criterion would be more suitable.

46.18 —74.76 —17.60 20.82
g | —74T6 15107 475 2373
HOS = 1 1760 475  48.07 —22.61

20.82 —23.73 —22.61 36.46

49.18 —95.04 —4.94 24.14
Go | 9504 194.86 —057 —49.58
NHB = _ 4094 —0.57 2056  4.47
2414 —49.58 4.47  34.00

Table 1 and 2 compare the classification accuracies using Daubechies order 5 features and adaptive wavelet
features (before and after optimization). Optimization is using the unconstrained MATLAB optimizer. Both
the approximate and detailed bands at level 3 were investigated.

Further analysis is carried out to interpret the wavelet coeflicients in the Fourier domain. The coefficients
are converted to the Fourier domain to provide insight to the range of frequencies that a particular band encom-
passes. Figure 6 illustrates the average spectral band of HOS cells and NHB cells with the spectral band of the
approximate and detailed coeflicients at level 3 respectively. Although optimum discriminatory information is
obtained, only 40% of the signal energy are retained.
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Table 1. Comparison of accuracies using the quadratic classifier for Daubechies 5 and Adaptive wavelets (before and
after optimization) of the detailed coefficients at level 3.

| Wavelet |m g 1 d Nf| % (Quad classifier) | CVQPM |
Daubechies 5 2 9 3 25 20 86.46 0.884
Adaptive (beforeopt.) | 2 9 3 25 20 76.04 0.773
Adaptive (after opt.) 2 9 3 25 20 96.88 0.967

Table 2. Comparison of accuracies using quadratic classifier for Daubechies 5 and Adaptive wavelets (before and after
optimization) of the approximate coefficients at level 3.

| Wavelet [m q 1 d Nf[% (Quad classifier) | CVQPM |
Daubechies 5 2 9 3 25 20 77.08 0.781
Adaptive (beforeopt.) | 2 9 3 25 20 73.96 0.764
Adaptive (after opt.) 2 9 3 25 20 92.71 0.928

To inspect the separation of classes visually, each features are assigned a Fisher Score given by!?

+_7)2
= G a8)

where pf and ai+ are the mean and the standard deviation of feature ¢ for all training vectors in the positive
class and p; and o; are the mean and the standard deviation of feature 7 for all training vectors in the negative
class. This score provides a quantitative evaluation of a feature with a higher score implying a higher relevancy.

A scatter plot of the two features with the highest Fisher score is shown in Figure 7. From 25 coefficients,
the two selected features have a score of 1.23 and 1.61 respectively. From the plot, it can be seen that the

responses are well separated with little overlap and is more distinct in higher dimensions but that is beyond our
visualization ability.
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Figure 6. Average spectras of the HOS and NHB cells’ responses in comparison to the frequency band of cD3.
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Figure 7. Scatter plot of features.

6.2. Rational Wavelet Features Classification

Three classifiers were used, namely the Mahalanobis Distance Classifier, and Support Vector Machines with a
linear kernel and one with a Gaussian radial basis function (RBF) kernel. SVM using Gaussian radial basis
function?’ is a type of SVM which uses a kernel function given as K(x,y) = e~llz=vl/20* " A kernel function is
used to map the original data into a higher-dimensional non-linear space. This is necessary to classify non-linear
data using linear classification methods.

Table 3 shows that most of the discriminant information is within the ¢D5 band. A frequency plot of the

c¢D3 band is shown in Figure 9. Rational wavelets provide a finer resolution compared to dyadic wavelets and
therefore capture relevant discriminant information while removing redundant information.

Table 3. Classification accuracy obtained using rational wavelets with a 3/2 scaling.

| Level | Mahalanobis(5 top Fisher features) SVM(Linear) SVM(RBF) |

1 56.25% 50% 50%
2 58.33% 50% 50%
3 66.67% 57.71% 59.27%
4 72.92% 64.90% 73.54%
5 89.58% 88.54% 91.15%
6 70.83% 55.00% 50%

7. CONCLUSION AND FUTURE WORK

Adaptive and Rational wavelets are applied to reduce the dimensionality of classification features to a point
where optimum discrimination information is retained while removing redundant or adverse information, which
impacts negatively the classification accuracy.

Adaptive wavelets gradually adapts to the signal relative to a discriminant criterion. The linear and quadratic
discriminant criterion were investigated and a classification accuracy of 96.88% for both cases are achieved. The
quadratic discriminant criterion provides a more unbiased result. The linear discriminant criterion case assumes
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equal covariance matrices for both the signals, which are invalid and therefore lead to biased results. In addition,
adaptive wavelets compute the best basis iteratively instead of choosing a specific wavelet base manually. The
classification accuracy of adaptive wavelets features is remarkably higher compared to Daubechies wavelets

features (86.5%).

From the results observed, we can conclude that rational wavelets do offer good classification accuracy.
However, wavelet packet analysis should be able to perform as well as rational wavelets, the only difference is
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that wavelet packet analysis do not provide embedded subspaces.
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Future work into adaptive wavelets as a feature extraction tool involves comparisons of other discriminant
criterions, such as regularized discriminant analysis, penalized discriminant analysis and flexible discriminant
analysis. The features extracted using adaptive wavelets can be fed into more robust classifiers such as Support
Vector Machines.
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