65 research outputs found

    Adhesion GPCRs are widely expressed throughout the subsections of the gastrointestinal tract

    Get PDF
    Background: G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs in the rat GI tract divided into twelve subsegments. Methods: Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum. Results: We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments) or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members, hinting at more specific/localized roles for some of these receptors. Conclusions: Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and defines them as a potentially crucial target for pharmacological interventions. © 2012 Badiali et al.; licensee BioMed Central Ltd

    CCAP regulates feeding behavior via the NPF pathway in Drosophila adults

    Get PDF
    The intake of macronutrients is crucial for the fitness of any animal and is mainly regulated by peripheral signals to the brain. How the brain receives and translates these peripheral signals or how these interactions lead to changes in feeding behavior is not well-understood. We discovered that 2 crustacean cardioactive peptide (CCAP)-expressing neurons in Drosophila adults regulate feeding behavior and metabolism. Notably, loss of CCAP, or knocking down the CCAP receptor (CCAP-R) in 2 dorsal median neurons, inhibits the release of neuropeptide F (NPF), which regulates feeding behavior. Furthermore, under starvation conditions, flies normally have an increased sensitivity to sugar; however, loss of CCAP, or CCAP-R in 2 dorsal median NPF neurons, inhibited sugar sensitivity in satiated and starved flies. Separate from its regulation of NPF signaling, the CCAP peptide also regulates triglyceride levels. Additionally, genetic and optogenetic studies demonstrate that CCAP signaling is necessary and sufficient to stimulate a reflexive feeding behavior, the proboscis extension reflex (PER), elicited when external food cues are interpreted as palatable. Dopaminergic signaling was also sufficient to induce a PER. On the other hand, although necessary, NPF neurons were not able to induce a PER. These data illustrate that the CCAP peptide is a central regulator of feeding behavior and metabolism in adult flies, and that NPF neurons have an important regulatory role within this system

    Burkitt lymphoma with a granulomatous reaction: an M1/Th1-polarised microenvironment is associated with controlled growth and spontaneous regression

    Get PDF
    Aims: Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that, in some instances, may show a granulomatous reaction associated with a favourable prognosis and occasional spontaneous regression. In the present study, we aimed to define the tumour microenvironment (TME) in four such cases, two of which regressed spontaneously. Methods and results: All cases showed aggregates of tumour cells with the typical morphology, molecular cytogenetics and immunophenotype of BL surrounded by a florid epithelioid granulomatous reaction. All four cases were Epstein–Barr virus (EBV)-positive with type I latency. Investigation of the TME showed similar features in all four cases. The analysis revealed a proinflammatory response triggered by Th1 lymphocytes and M1 polarised macrophages encircling the neoplastic cells with a peculiar topographic distribution. Conclusions: Our data provide an in-vivo picture of the role that specific immune cell subsets might play during the early phase of BL, which may be capable of maintaining the tumour in a self-limited state or inducing its regression. These novel results may provide insights into new potential therapeutic avenues in EBV-positive BL patients in the era of cellular immunotherapy

    Burkitt lymphoma with granulomatous reaction: A M1/TH1‐polarized microenvironment associates with controlled growth and spontaneous regression

    Get PDF
    AIMS: Burkitt lymphoma (BL) is an aggressive B-cell lymphoma, which in some instances, may show a granulomatous reaction associated with a favourable prognosis and occasional spontaneous regression. In the present study, we aimed to define the tumour microenvironment (TME) in four of such cases, two of which regressed spontaneously. METHODS AND RESULTS: All cases showed aggregates of tumour cells with the typical morphology, molecular cytogenetics and immunophenotype of BL surrounded by a florid epithelioid granulomatous reaction. All four cases were Epstein-Barr virus (EBV) positive with type I latency. The investigation of the tumour microenvironment (TME) showed similar features in all four cases. The analysis revealed a pro-inflammatory response triggered by Th1 lymphocytes and M1 polarized macrophages encircling the neoplastic cells with a peculiar topographic distribution. CONCLUSIONS: Our data provide an in vivo picture of the role that specific immune cell subsets might play during the early phase of BL, which may be capable of maintaining the tumour in a self-limited state or inducing its regression. These novel results may provide insights to explore new potential therapeutic avenues in EBV-positive BL patients in the era of cellular immunotherapy

    OLD RATS ARE UNRESPONSIVE TO THE BEHAVIORAL-EFFECTS OF ADRENOCORTICOTROPIN

    No full text
    In 28 month-old male rats, the i.c.v. injection of adrenocorticotropin [ACTH-(1-24)] (4 mu g/rat) did not induce the typical behavioral syndrome (excessive grooming, stretching, yawning, penile erections). This indicates that the behavioral effects of melanocortins are age-dependent, suggesting either an aging-linked impairment of the nervous circuitries involved or a reduction of the number (or affinity, or both) of the brain melanocortin receptors in the elderly

    Adhesion GPCRs are widely expressed throughout the subsections of the gastrointestinal tract

    No full text
    Abstract Background G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs in the rat GI tract divided into twelve subsegments. Methods Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum. Results We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments) or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members, hinting at more specific/localized roles for some of these receptors. Conclusions Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and defines them as a potentially crucial target for pharmacological interventions.</p

    Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats

    No full text
    Prolactin releasing peptide (PrRP) has been reported to reduce food intake in rats. We tested the effect of i.c.v. administration of PrRP-31 on food intake in both food deprived and free-feeding rats. We did not find any effect of PrRP-31 on food intake after single injections of up to an 8-nmol dose, but observed a marked decrease in food intake and body weight in rats that received a repeated twice daily administration of 8 nmol of PrRP-31. This effect was associated with an adverse behavioral pattern, indicating that the repeated high doses of the peptide caused non-specific effects inducing anorexia. We also tested several other behavioral parameters like locomotion and exploratory time, grooming and resting time, using lower doses of PrRP that did not cause the adverse behavior. Moreover, we carried out locomotor and sensory motor activity tests at the doses that exerted the most pronounced effect on the food intake. None of these tests suggested any specific behavioral effect of PrRP. We conclude that the behavioral pattern induced by PrRP is likely to be different from those induced by many other neuropeptides affecting food intake in rats
    corecore