86 research outputs found

    Slakken bijten in het zand: Veranderingen in de verspreiding van slakken in de Belgische kustduinen

    Get PDF
    This paper deals with changes in the occurrence of land molluscs in the dunes along the Belgian coast using the dataset of the Royal Belgian Institute of Natural Sciences and new data from fieldwork by Devriese and Vercoutere. It was revealed that species which had been introduced during the last World Wars, established populations in the coastal dunes of Belgium. Launa cylindracea, Candidula intersecta, Cernuella virgata and Cochlicella acuta are now among the most distributed species. As dunes became more forested, other species colonised the dunes from inside the country. Among them Trichia hispida, Cochlicopa lubrica and Oxychillus cellanus are examples of species which are now commonly observed in the dunes

    Development of Solid-State Nanopore Technology for Life Detection

    Get PDF
    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA

    Duration learning for analysis of nanopore ionic current blockades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ionic current blockade signal processing, for use in nanopore detection, offers a promising new way to analyze single molecule properties, with potential implications for DNA sequencing. The alpha-Hemolysin transmembrane channel interacts with a translocating molecule in a nontrivial way, frequently evidenced by a complex ionic flow blockade pattern. Typically, recorded current blockade signals have several levels of blockade, with various durations, all obeying a fixed statistical profile for a given molecule. Hidden Markov Model (HMM) based duration learning experiments on artificial two-level Gaussian blockade signals helped us to identify proper modeling framework. We then apply our framework to the real multi-level DNA hairpin blockade signal.</p> <p>Results</p> <p>The identified upper level blockade state is observed with durations that are geometrically distributed (consistent with an a physical decay process for remaining in any given state). We show that mixture of convolution chains of geometrically distributed states is better for presenting multimodal long-tailed duration phenomena. Based on learned HMM profiles we are able to classify 9 base-pair DNA hairpins with accuracy up to 99.5% on signals from same-day experiments.</p> <p>Conclusion</p> <p>We have demonstrated several implementations for <it>de novo </it>estimation of duration distribution probability density function with HMM framework and applied our model topology to the real data. The proposed design could be handy in molecular analysis based on nanopore current blockade signal.</p

    Nanopore-based kinetics analysis of individual antibody-channel and antibody-antigen interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UNO/RIC Nanopore Detector provides a new way to study the binding and conformational changes of individual antibodies. Many critical questions regarding antibody function are still unresolved, questions that can be approached in a new way with the nanopore detector.</p> <p>Results</p> <p>We present evidence that different forms of channel blockade can be associated with the same antibody, we associate these different blockades with different orientations of "capture" of an antibody in the detector's nanometer-scale channel. We directly detect the presence of antibodies via reductions in channel current. Changes to blockade patterns upon addition of antigen suggest indirect detection of antibody/antigen binding. Similarly, DNA-hairpin anchored antibodies have been studied, where the DNA linkage is to the carboxy-terminus at the base of the antibody's Fc region, with significantly fewer types of (lengthy) capture blockades than was observed for free (un-bound) IgG antibody. The introduction of chaotropic agents and its effects on protein-protein interactions have also been observed.</p> <p>Conclusion</p> <p>Nanopore-based approaches may eventually provide a direct analysis of the complex conformational "negotiations" that occur upon binding between proteins.</p

    Support Vector Machine Implementations for Classification & Clustering

    Get PDF
    BACKGROUND: We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes). RESULTS: Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information – to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described

    A novel, fast, HMM-with-Duration implementation – for application with a new, pattern recognition informed, nanopore detector

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMMs) provide an excellent means for structure identification and feature extraction on stochastic sequential data. An HMM-with-Duration (HMMwD) is an HMM that can also exactly model the hidden-label length (recurrence) distributions – while the regular HMM will impose a best-fit geometric distribution in its modeling/representation.</p> <p>Results</p> <p>A Novel, Fast, HMM-with-Duration (HMMwD) Implementation is presented, and experimental results are shown that demonstrate its performance on two-state synthetic data designed to model Nanopore Detector Data. The HMMwD experimental results are compared to (i) the ideal model and to (ii) the conventional HMM. Its accuracy is clearly an improvement over the standard HMM, and matches that of the ideal solution in many cases where the standard HMM does not. Computationally, the new HMMwD has all the speed advantages of the conventional (simpler) HMM implementation. In preliminary work shown here, HMM feature extraction is then used to establish the first pattern recognition-informed (PRI) sampling control of a Nanopore Detector Device (on a "live" data-stream).</p> <p>Conclusion</p> <p>The improved accuracy of the new HMMwD implementation, at the same order of computational cost as the standard HMM, is an important augmentation for applications in gene structure identification and channel current analysis, especially PRI sampling control, for example, where speed is essential. The PRI experiment was designed to inherit the high accuracy of the well characterized and distinctive blockades of the DNA hairpin molecules used as controls (or blockade "test-probes"). For this test set, the accuracy inherited is 99.9%.</p

    Multinational evidence-based recommendations on how to investigate and follow-up undifferentiated peripheral inflammatory arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative

    Get PDF
    Methods: 697 rheumatologists from 17 countries participated in the 3E (Evidence, Expertise, Exchange) Initiative of 2008–9 consisting of three separate rounds of discussions and modified Delphi votes. In the first round 10 clinical questions were selected. A bibliographic team systematically searched Medline, Embase, the Cochrane Library and ACR/EULAR 2007–2008 meeting abstracts. Relevant articles were reviewed for quality assessment, data extraction and synthesis. In the second round each country elaborated a set of national recommendations. Finally, multinational recommendations were formulated and agreement among the participants and the potential impact on their clinical practice was assessed. Results: A total of 39 756 references were identified, of which 250 were systematically reviewed. Ten multinational key recommendations about the investigation and follow-up of UPIA were formulated. One recommendation addressed differential diagnosis and investigations prior to establishing the operational diagnosis of UPIA, seven recommendations related to the diagnostic and prognostic value of clinical and laboratory assessments in established UPIA (history and physical examination, acute phase reactants, autoantibodies, radiographs, MRI and ultrasound, genetic markers and synovial biopsy), one recommendation highlighted predictors of persistence (chronicity) and the final recommendation addressed monitoring of clinical disease activity in UPIA. Conclusions: Ten recommendations on how to investigate and follow-up UPIA in the clinical setting were developed. They are evidence-based and supported by a large panel of rheumatologists, thus enhancing their validity and practical use

    Nanopore Detector based analysis of single-molecule conformational kinetics and binding interactions

    Get PDF
    BACKGROUND: A Nanopore Detector provides a means to transduce single molecule events into observable channel current changes. Nanopore-based detection can report directly, or indirectly, on single molecule kinetics. The nanopore-based detector can directly measure molecular characteristics in terms of the blockade properties of individual molecules – this is possible due to the kinetic information that is embedded in the blockade measurements, where the adsorption-desorption history of the molecule to the surrounding channel, and the configurational changes in the molecule itself, imprint on the ionic flow through the channel. This rich source of information offers prospects for DNA sequencing and single nucleotide polymorphism (SNP) analysis. A nanopore-based detector can also measure molecular characteristics indirectly, by using a reporter molecule that binds to certain molecules, with subsequent distinctive blockade by the bound-molecule complex. RESULTS: It is hypothesized that reaction histories of individual molecules can be observed on model DNA/DNA, DNA/Protein, and Protein/Protein systems. Preliminary results are all consistent with this hypothesis. Nanopore detection capabilities are also described for highly discriminatory biosensing, binding strength characterization, and rapid immunological screening. CONCLUSION: In essence, the heart of chemistry is now accessible to a new, single-molecule, observation method that can track both external molecular binding states, and internal conformation states

    The NTD Nanoscope: potential applications and implementations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers.</p> <p>Results</p> <p>The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned.</p> <p>Conclusions</p> <p>SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase chain reaction (PCR) enzyme. The NTD Nanoscope offers a means to obtain higher accuracy as it is a single-molecule method that does not inherently involve use of enzymes, using a functionalized nanopore instead.</p

    Dendrimers in Nanoscale Confinement: The Interplay between Conformational Change and Nanopore Entrance

    Get PDF
    Hyperbranched dendrimers are nanocarriers for drugs, imaging agents, and catalysts. Their nanoscale confinement is of fundamental interest and occurs when dendrimers with bioactive payload block or pass biological nanochannels or when catalysts are entrapped in inorganic nanoporous support scaffolds. The molecular process of confinement and its effect on dendrimer conformations are, however, poorly understood. Here, we use single-molecule nanopore measurements and molecular dynamics simulations to establish an atomically detailed model of pore dendrimer interactions. We discover and explain that electrophoretic migration of polycationic PAMAM dendrimers into confined space is not dictated by the diameter of the branched molecules but by their size and generation-dependent compressibility. Differences in structural flexibility also rationalize the apparent anomaly that the experimental nanopore current read-out depends in nonlinear fashion on dendrimer size. Nanoscale confinement is inferred to reduce the protonation of the polycationic structures. Our model can likely be expanded to other dendrimers and be applied to improve the analysis of biophysical experiments, rationally design functional materials such as nanoporous filtration devices or nanoscale drug carriers that effectively pass biological pores
    corecore