362 research outputs found
Clustering of Primordial Black Holes. II. Evolution of Bound Systems
Primordial Black Holes (PBHs) that form from the collapse of density
perturbations are more clustered than the underlying density field. In a
previous paper, we showed the constraints that this has on the prospects of PBH
dark matter. In this paper we examine another consequence of this clustering:
the formation of bound systems of PBHs in the early universe. These would
hypothetically be the earliest gravitationally collapsed structures, forming
when the universe is still radiation dominated. Depending upon the size and
occupation of the clusters, PBH merging occurs before they would have otherwise
evaporated due to Hawking evaporation.Comment: 23 pages, 1 figure. Submitted to PR
Blue spectra and induced formation of primordial black holes
We investigate the statistical properties of primordial black hole (PBH)
formation in the very early Universe. We show that the high level of
inhomogeneity of the early Universe leads to the formation of the first
generation PBHs. %The existence of these PBHs This causes later the appearance
of a dust-like phase of the cosmological expansion. We discuss here a new
mechanism for the second generation of PBH formation during the dust-like
phase. This mechanism is based on the coagulation process. We demonstrate that
the blue power spectrum of initial adiabatic perturbations after inflation
leads to overproduction of primordial black holes with gg if the power index is .Comment: 16 pages, 2 figure
Astrophysical constraints on primordial black holes in Brans-Dicke theory
We consider cosmological evolution in Brans-Dicke theory with a population of
primordial black holes. Hawking radiation from the primordial black holes
impacts various astrophysical processes during the evolution of the Universe.
The accretion of radiation by the black holes in the radiation dominated era
may be effective in imparting them a longer lifetime. We present a detailed
study of how this affects various standard astrophysical constraints coming
from the evaporation of primordial black holes. We analyze constraints from the
present density of the Universe, the present photon spectrum, the distortion of
the cosmic microwave background spectrum and also from processes affecting
light element abundances after nucleosynthesis. We find that the constraints on
the initial primordial black hole mass fractions are tightened with increased
accretion efficiency.Comment: 15 page
Primordial black hole constraints in cosmologies with early matter domination
Moduli fields, a natural prediction of any supergravity and
superstring-inspired supersymmetry theory, may lead to a prolonged period of
matter domination in the early Universe. This can be observationally viable
provided the moduli decay early enough to avoid harming nucleosynthesis. If
primordial black holes form, they would be expected to do so before or during
this matter dominated era. We examine the extent to which the standard
primordial black hole constraints are weakened in such a cosmology. Permitted
mass fractions of black holes at formation are of order , rather than
the usual or so. If the black holes form from density perturbations
with a power-law spectrum, its spectral index is limited to ,
rather than the obtained in the standard cosmology.Comment: 7 pages RevTeX file with four figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/infcos_papers.htm
Cosmological constraints on primordial black holes produced in the near-critical gravitational collapse
The mass function of primordial black holes created through the near-critical
gravitational collapse is calculated in a manner fairly independent of the
statistical distribution of underlying density fluctuation, assuming that it
has a sharp peak on a specific scale. Comparing it with various cosmological
constraints on their mass spectrum, some newly excluded range is found in the
volume fraction of the region collapsing into black holes as a function of the
horizon mass.Comment: 9 pages. Typos corrected. To appear in Physical Review
Supersymmetry and primordial black hole abundance constraints
We study the consequences of supersymmetry for primordial black hole (PBH)
abundance constraints. PBHs with mass less than about 10^{11}g will emit
supersymmetric particles when they evaporate. In most models of supersymmetry
the lightest of these particles, the lightest supersymmetric particle (LSP), is
stable and will hence survive to the present day. We calculate the limit on the
initial abundance of PBHs from the requirement that the present day LSP density
is less than the critical density. We apply this limit, along with those
previously obtained from the effects of PBH evaporation on nucleosynthesis and
the present day density of PBHs, to PBHs formed from the collpase of
inflationary density perturbations, in the context of supersymmetric inflation
models. If the reheat temperature after inflation is low, so as to avoid the
overproduction of gravitinos and moduli, then the lightest PBHs which are
produced in significant numbers will be evaporating around the present day and
there are therefore no constraints from the effects of the evaporation products
on nucleosynthesis or from the production of LSPs. We then examine models with
a high reheat temperature and a subsequent period of thermal inflation. In
these models avoiding the overproduction of LSPs limits the abundance of low
mass PBHs which were previously unconstrained. Throughout we incorporate the
production, at fixed time, of PBHs with a range of masses, which occurs when
critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and
epsf). Version to appear in Phys. Rev. D: minor change to calculation and
added discussio
Lugar, região, nação, mundo: explorações históricas do debate acerca das escalas da ação política
A partir de uma revisão teórica da noção de escala e de uma recuperação do debate socialista no século XIX a respeito de nacionalismo e internacionalismo, o artigo pretende lançar um novo olhar sobre a discussão contemporânea acerca da escala pertinente da ação política e do planejamento. Rejeitando a possibilidade de que qualquer estratégia efetivamente transformadora se inscreva numa única e privilegiada escala – local, regional, nacional ou global –, a conclusão sugere que o poder, mais do que nunca, não está nem no local nem no regional, nem no nacional nem no global… mas na capacidade de articular escalas, de analisar e intervir de modo transescalar.
Planejamento territorial e projeto nacional: os desafios da fragmentação
A história recente do planejamento territorial no Brasil poderia ser narrada como uma trajetória continuada, embora não linear, de desconstituição – política, intelectual e institucional. Este processo é resultado e fator de aceleração do processo de fragmentação territorial que desafia todos os que se preocupam com a necessidade de um projeto nacional digno desta abrangência. O presente trabalho busca identificar e analisar os principais vetores do processo de fragmentação, a saber: grandes projetos de investimento (GPIs), neo-localismo competitivo e o velho regionalismo, com suas redes de clientela-patronagem. Em seguida, são examinados rapidamente os referentes teórico-conceituais dos GPIs e, em particular, do neo-localismo competitivo, que constitui hoje a principal receita distribuída aos países periféricos e dependentes por agências multilaterais e consultores internacionais. Ao final, busca-se explorar em que medida estariam emergindo no processo social contemporâneo tendências e forças capazes de neutralizarem os vetores da fragmentação e conduzirem um projeto nacional, no qual, necessariamente, o planejamento territorial deverá ocupar lugar central.
Primordial Black Holes: sirens of the early Universe
Primordial Black Holes (PBHs) are, typically light, black holes which can
form in the early Universe. There are a number of formation mechanisms,
including the collapse of large density perturbations, cosmic string loops and
bubble collisions. The number of PBHs formed is tightly constrained by the
consequences of their evaporation and their lensing and dynamical effects.
Therefore PBHs are a powerful probe of the physics of the early Universe, in
particular models of inflation. They are also a potential cold dark matter
candidate.Comment: 21 pages. To be published in "Quantum Aspects of Black Holes", ed. X.
Calmet (Springer, 2014
- …
