1,706 research outputs found
Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.
BackgroundRacetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior.ObjectiveTo develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties.MethodsTrack-testing device (TTD) impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack) and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression.ResultsMost dynamic surface property setting differences (racetrack-laboratory) were small relative to surface material type differences (dirt-synthetic). Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces.ConclusionsLaboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof impact (TTD).Potential relevanceDynamic impact properties of race surfaces can be evaluated in a laboratory setting, allowing for further study of factors affecting surface behavior under controlled conditions
Fission of a multiphase membrane tube
A common mechanism for intracellular transport is the use of controlled
deformations of the membrane to create spherical or tubular buds. While the
basic physical properties of homogeneous membranes are relatively well-known,
the effects of inhomogeneities within membranes are very much an active field
of study. Membrane domains enriched in certain lipids in particular are
attracting much attention, and in this Letter we investigate the effect of such
domains on the shape and fate of membrane tubes. Recent experiments have
demonstrated that forced lipid phase separation can trigger tube fission, and
we demonstrate how this can be understood purely from the difference in elastic
constants between the domains. Moreover, the proposed model predicts timescales
for fission that agree well with experimental findings
Comment on "On the importance of the free energy for elasticity under pressure"
Marcus et al. (Marcus P, Ma H and Qiu S L 2002 J. Phys.: Condens. Matter 14
L525) claim that thermodynamic properties of materials under pressure must be
computed using the Gibbs free energy , rather than the internal energy .
Marcus et al. state that ``The minima of , but not of , give the
equilibrium structure; the second derivatives of , but not of , with
respect to strains at the equilibrium structure give the equilibrium elastic
constants.'' Both statements are incorrect.Comment: Commen
Grand canonical ensemble in generalized thermostatistics
We study the grand-canonical ensemble with a fluctuating number of degrees of
freedom in the context of generalized thermostatistics. Several choices of
grand-canonical entropy functional are considered. The ideal gas is taken as an
example.Comment: 14 pages, no figure
Small RNA profiling of low biomass samples: identification and removal of contaminants
Background
Sequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. DNA contamination has been previously reported, yet contamination with RNA is usually considered to be very unlikely due to its inherent instability. Small RNAs (sRNAs) identified in tissues and bodily fluids, such as blood plasma, have implications for physiology and pathology, and therefore the potential to act as disease biomarkers. Thus, the possibility for RNA contaminants demands careful evaluation.
Results
Herein, we report on the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and propose an approach for their depletion. We sequenced sRNAs extracted from human plasma samples and detected important levels of non-human (exogenous) sequences whose source could be traced to the microRNA extraction columns through a careful qPCR-based analysis of several laboratory reagents. Furthermore, we also detected the presence of artefactual sequences related to these contaminants in a range of published datasets, thereby arguing in particular for a re-evaluation of reports suggesting the presence of exogenous RNAs of microbial and dietary origin in blood plasma. To avoid artefacts in future experiments, we also devise several protocols for the removal of contaminant RNAs, define minimal amounts of starting material for artefact-free analyses, and confirm the reduction of contaminant levels for identification of bona fide sequences using ‘ultra-clean’ extraction kits.
Conclusion
This is the first report on the presence of RNA molecules as contaminants in RNA extraction kits. The described protocols should be applied in the future to avoid confounding sRNA studies. Keywords: RNA sequencing; Artefact removal; Exogenous RNA in human blood plasma; Contaminant RNA; Spin column
Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD
Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers
Genotype × Environment Interaction of Quality Protein Maize Grain Yield in Nepal
In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti) and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski) districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding and better adapted genotypes for Terai environments with grain yield of 4199 kg ha-1, 3715 kg ha-1, and 3336 kg ha-1 respectively and S99TLYQ-B and S03TLYQ-AB-01 for mid hill environments with grain yield of 4547 kg ha-1 and 4365 kg ha-1 respectively. Therefore, these genotypes can be suggested for cultivation in their respective environments in the country
Nonextensivity of the cyclic Lattice Lotka Volterra model
We numerically show that the Lattice Lotka-Volterra model, when realized on a
square lattice support, gives rise to a {\it finite} production, per unit time,
of the nonextensive entropy . This finiteness only occurs for for the growth mode
(growing droplet), and for for the one (growing stripe). This
strong evidence of nonextensivity is consistent with the spontaneous emergence
of local domains of identical particles with fractal boundaries and competing
interactions. Such direct evidence is for the first time exhibited for a
many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
- …
