1,735 research outputs found

    Enhanced third-order optical nonlinearity driven by surface-plasmon field gradients

    Full text link
    Achieving efficient nonlinear optical frequency conversion in small volumes is key for future on-chip photonic devices that would provide a higher-speed alternative to modern electronics. However, the already intrinsically low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response, offering a new approach for enhanced nonlinear optics in nanostructures. We show that a {\em longitudinal} nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω1ω22\omega_1 - \omega_2 four-wave mixing response as a function of detuning ω1ω2\omega_1 - \omega_2, we find up to 10510^{-5} conversion efficiency with a gradient field contribution to χAu(3)\chi^{(3)}_{\mathrm{Au}} of up to 1019 m2/V210^{-19}~\mathrm{m}^2 / \mathrm{V}^2. The results are in good agreement with theory based on plasma hydrodynamics. Our results demonstrate an increase in nonlinear conversion efficiency with decreasing sample size that can offset and even overcompensate the volume decrease of conventional dipolar pathways. This will enable more efficient nonlinear optical devices and frequency converters and facilitate the extension of coherent multidimensional spectroscopies to the nanoscale.Comment: 14 pages, 4 figure

    Body composition evaluated by skinfolds, bioimpedance and body mass index in adults

    Full text link
    El objetivo de este estudio fue comparar la composición corporal por pliegues cutáneos (DC) por bioimpedancia eléctrica(BIA) y el índice de masa corporal(IMC). Se hizo un trabajo de campo con 153 militares usando los siguientes equipos: balanza Wiso; estadiómetro WCS; adipómetro Cescorf científico y Malton BF-900 para bioimpedancia eléctrica. La densidad corporal se consiguió por la ecuación de Jackson&Pollock y la clasificación delporcentaje de grasa corporal siguiendo Pollock&Wilmore. Para verificar la correlación se usó el test de Spearman. Los resultados promedios (± desviación estándar) hallados para edad, peso, estatura e IMC, fueron: 19 años (±1,8 años), 70,9Kg (±9,55), 1,74 metros (±0.06) y 23,9 kg/m² (±2,76) respectivamente. El porcentaje de grasa corporal por DC y BIA fueron respectivamente 12,78 (±5,45); 16,29 (±4,02). Concluí que la composición corporal por el método de DC, BIA e IMC presentó datos que se correlacionan, siendo que el uso de la bioimpedancia fue más indicada en grupos cuyo porcentaje de grasa corporal variaba entre 18-20%.The aim of this study was to compare body composition by skinfold thickness (DC) by bioelectrical impedance analysis (BIA) and body mass index (BMI). Research was carried out with 153 soldiers with the equipment: balance Wiso; WCS stadiometer; adipometer Cescorf Malton scientific and BF-900 to bioelectrical impedance analysis. Body density was obtained by the equation of Jackson&Pollock and classification of the percentage of fat by following Pollock&Wilmore. To check the correlation was used Spearman's test. The average results (±standard deviation) found for age, weight, height and BMI were: 19 years (±1.8years), 70.9 kg (±9.55), 1.74 meters (±0.06) and 23.9 kg/m² (±2.76), respectively. The fat percentage by BIA and DC were respectively 12.78 (±5.45) and 16.29 (±4.02). Concluded that body composition by the method of DC, BIA and BMI have data that correlate, and the use of bioimpedance was indicated in most groups whose fat percentage ranged around 18-20%.Gracias CAPES para la inversión financiera en forma de beca en el Programa de Posgrado en Ingeniería Eléctrica e Informática Industrial (CPGEI) de la Universidad Tecnológica Federal de Paraná (UTFPR)

    A Mechanical Mass Sensor with Yoctogram Resolution

    Full text link
    Nanoelectromechanical systems (NEMS) have generated considerable interest as inertial mass sensors. NEMS resonators have been used to weigh cells, biomolecules, and gas molecules, creating many new possibilities for biological and chemical analysis [1-4]. Recently, NEMS-based mass sensors have been employed as a new tool in surface science in order to study e.g. the phase transitions or the diffusion of adsorbed atoms on nanoscale objects [5-7]. A key point in all these experiments is the ability to resolve small masses. Here we report on mass sensing experiments with a resolution of 1.7 yg (1 yg = 10^-24 g), which corresponds to the mass of one proton, or one hydrogen atom. The resonator is made of a ~150 nm long carbon nanotube resonator vibrating at nearly 2 GHz. The unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules (C10H8) and to measure the binding energy of a Xe atom on the nanotube surface (131 meV). These ultrasensitive nanotube resonators offer new opportunities for mass spectrometry, magnetometry, and adsorption experiments.Comment: submitted version of the manuscrip

    Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro

    Get PDF
    Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion. 4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged. In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride. It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021s110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Ground states and dynamics of population-imbalanced Fermi condensates in one dimension

    Full text link
    By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of Physic

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure
    corecore